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Tag Recommendation
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Tag Recommendation: CiteULike
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Related Work

Content-based:

© Chen et al., 2008

@ Chen et al., 2010

@ Shen and Fan, 2010
Co-occurrence based:
@ Garg and Weber, 2008
@ Weinberger et al., 2008
© Rendle and Schmidt-Thieme, 2010
Hybrid:

Q@ Wu et al., 2009

@ Wang and Blei, 2011
@ Yang et al., 2013
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Content-based

@ Chen et al., 2008
@ Chen et al., 2010
© Shen and Fan, 2010
Qo ...

Pros:

© Tag independence

@ Interpretability

© No New-item problem
Cons:

© Need domain knowledge
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Co-occurrence based

@ Garg and Weber, 2008
@ Weinberger et al., 2008
© Rendle and Schmidt-Thieme, 2010
o ...
Pros:
© No domain knowledge needed
Cons:
@ Requires some form of rating feedback (co-occurrence matrix)
@ New-tag problem and new-item problem
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Q@ Wu et al., 2009

@ Wang and Blei, 2011
@ Yang et al., 2013

Q ...

BEST OF BOTH WORLDS
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Collaborative Topic Regression (CTR)

(Wang and Blei, KDD 2011)

Maximum Likelihood from Incomplete Data via the EM Algorithm

By A. P. DemPSTER, N. M. LARRD and D. B. RuBIN
Harvard University and Educational Testing Service

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH
SectioN on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]

SUMMARY

A broadly applicable algorithm for computing maximum likelihood estimates from
incomplete data is presented at various levels of generality. Theory showing the
monotone behaviour of the likelihood and convergence of the algorithm is derived.
Many examples are sketched, including missing value situations, applications to
grouped, censored or truncated data, finite mixture models, variance component
estimation, hyperparameter estimation, iteratively reweighted least squares and
factor analysis.

matrix factorization topic modeling

I 777777777177 NN cstimate estimates likelihood maximum estimated missing
—_—— - algorithm signal input signals output exact performs music

- - distribution random probability distributions sampling stochastic
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Collaborative Topic Regression (CTR)

(Wang and Blei, KDD 2011)

Article representation in different methods

gene data
? ? dna nAum
" n

matrix factorization topic modeling

o LDA: sparse, relatively high dimension
e MF: low rank, low dimension
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Problems to Explore

@ Can SDAE learn effective representation for recommendation?
@ How to incorporate relational information into SDAE?
© How is the performance?
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© Generalized Probabilistic SDAE
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Stacked Denoising Autoencoder

(Vincent et al. JMLR 2010)

l
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min || X, — Xz||% + A W%,
{Wl},{bl}H c i ZZ:II Iz

where )\ is a regularization parameter and || - || denotes the Frobenius
norm.
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Generalized Probabilistic SDAE
&1 o - X3 Ty -ED ),

@ For each layer [ of the SDAE network,
@ For each column n of the weight matrix W, draw
Win ~ N (0,2, 'Ig,).
@ Draw the bias vector b; ~ N(0, A 'I,).
@ For each row j of X, draw
X ju ~ N(o(Xi_1 s Wi +by), A k).
@ For each item j, draw a clean input
Xc,j* ~ N<XL,j*7 >\1_L1]:B>
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© Relational SDAE
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Relational SDAE: Generative Process

@ Draw the relational latent matrix S from a matrix variate normal
distribution:

S ~ NKJ(O, IK X ()\lga)—l)'

@ For layer [ of the SDAE where [ =1,2,..., % —1,
@ For each column n of the weight matrix W, draw
Wlﬁm ~ N(O, )\EIIKZ)
@ Draw the bias vector b; ~ N(0, A\ ', ).
@ For each row j of X, draw

Xije ~ N(0(Xim1, s Wi+ br), AT ).

@ For layer % of the SDAE network, draw the representation vector
for item j from the product of two Gaussians (PoG):

Xs .~ PoG(o(Xe_y ;, Wi+ by),s7, A T, A ).
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Relational SDAE: Generative Process

© For layer [ of the SDAE network where | =2 +1, £ +2, ... L,

@ For each column n of the weight matrix W, draw
Win ~ N(0,2,'Ik,).

@ Draw the bias vector b; ~ N(0, A\ ', ).

@ For each row j of X, draw

Xl,j* ~ N(O’(Xl_ld‘*wl + bl), )\S_lIKl).
@ For each item j, draw a clean input

Xeju ~ N(Xpjus N, ).
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Relational SDAE: Graphical Model

& x> xom 0= @0

@ N
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Multi-Relational SDAE: Graphical Model

Ao W
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Relational SDAE: Objective function

The log-likelihood:

L =—Str(SZ£ST) - ZH W
- (||Wl||F+ I[by[|3)
An 9
Y Z XL g = Xe gl
J
As
- DO o (X1 Wi+ by) — X3,
L

where X ;. = 0(X;_1j+W; + by). Similar to the generalized SDAE,
taking A to infinity, the last term of the joint log-likelihood will vanish.
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Updating Rules

For S:
Skx(t 4 1) = Spa(t) + 6(t)r (1)
r(t) < A XL — (NZa + A1) Ska(t)
27

r(t)Tr(t)
) T nZs M)

For X, W, and b: Use Back Propagation.

Hao Wang Relational SDAE 20 / 36



From Representation to Tag Recommendation

Objective function:
M 2 A T2
g__7 E ||Ui||2—7 E ||Vj—X%7j*H2
i J
Cij i . T \2
- E 7(Rw —u; v;)%,
i?j

where A\, and ), are hyperparameters. ¢;; is set to 1 for the existing
ratings and 0.01 for the missing entries.
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Algorithm

1. Learning representation:
repeat
Update S using the updating rules
Update X, W, and b
until convergence
Get resulting representation X%J*

2. Learning u; and v;:
Optimize the objective function .Z

3. Recommend tags to items according to the predicted R,;:
R;j = u;fFVj
Rank le,jo,. .. ,R[j
Recommend tags with largest R;; to item j
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Problems to Explore

@ Can SDAE learn effective representation for recommendation?
@ How to incorporate relational information into SDAE?
© How is the performance?
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Outline

@ Performance Evaluation
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Description of datasets

citeulike-a | citeulike-t | movielens-plot
#items 16980 25975 7261
#tags 7386 8311 2988
#tag-item paris 204987 134860 51301
#relations 44709 32665 543621
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citeulike-a, Sparse Settting
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citeulike-a, Dense Settting
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movielens-plot, Sparse Settting
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movielens-plot, Dense Settting
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Outline

© Case study
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Tagging Scientific Articles

An example article with recommended tags

Title: Mining the Peanut Gallery: Opinion Extraction and Semantic
. Classification of Product Reviews
Example Article - — - -
Top topic 1: Ianguage, text, mining, representation, semantic, concepts,
words, relations, processing, categories
SDAE True? | RSDAE True?
1. instance no 1. sentiment_analysis no
2. consumer yes 2. instance no
3. sentiment_analysis no 3. consumer yes
4. summary no 4. summary no
Top 10 tags 5. 31july09 no 5. sentiment yes
6. medline no 6. product_review_mining yes
7. eit2 no 7. sentiment_classification yes
8. 12r no 8. 31july09 no
9. exploration no 9. opinion_mining yes
10. biomedical no 10. product yes
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Tagging Movies

An example movie with recommended tags

Title: E.T. the Extra-Terrestrial
Example Movie Top topic 1: crew, must, on, earth, human, save, ship, rescue,
by, find, scientist, planet
SDAE True tag?
1. Saturn Award (Best Special Effects) yes
2. Want no
3. Saturn Award (Best Fantasy Film) no
4. Saturn Award (Best Writing) yes
Top 10 recommended tags | 5. Cool but freaky no
6. Saturn Award (Best Director) no
7. Oscar (Best Editing) no
8. almost favorite no
9. Steven Spielberg yes
10. sequel better than original no
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Tagging Movies

An example movie with recommended tags

Title: E.T. the Extra-Terrestrial
Example Movie Top topic 1: crew, must, on, earth, human, save, ship, rescue,
by, find, scientist, planet
RSDAE True tag?
1. Steven Spielberg yes
2. Saturn Award (Best Special Effects) yes
3. Saturn Award (Best Writing) yes
4. Oscar (Best Editing) no
Top 10 recommended tags | 5. Want no
6. Liam Neeson no
7. AFI 100 (Cheers) yes
8. Oscar (Best Sound) yes
9. Saturn Award (Best Director) no
10. Oscar (Best Music - Original Score) yes
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Outline

@ Conclusion
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Conclusion

Contribution:
@ Adapt SDAE for tag recommendation
@ A probabilistic relational model for relational deep learning
© State-of-the-art performance

Take-home Message:
@ Deep models significantly boost recommendation accuracy
@ Probabilistic formulation facilitates relational deep learning
@ Incorporating relational information further boosts accuracy
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© Applications other than tag recommendation
@ Adaption for other deep learning models

© Integrated model instead of separate ones

@ Fully Bayesian methods
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Other Work

@ Collaborative CNN for recommender systems
@ Relational deep learning for link prediction
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citeulike-a, Sparse Settting
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