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Motivation: Link Prediction

Social Network Analysis (e.g., prediction friendship in Facebook)



Motivation: Link Prediction
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Document Networks (e.g., citation networks, co-author networks)



Motivation: Deep Latent Variable Models
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Motivation: Deep Latent Variable Models
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Stacked denoising Convolutional neural Recurrent neural
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Typically for i.i.d. data
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Bayesian Deep Learning

00
g

!

L

Perception component Task-Specific component

Content understanding
Posts by users
Text in articles

Target task
Link prediction

Bayesian deep learning (BDL)

*Maximum a posteriori (MAP)
*Markov chain Monte Carlo (MCMCQ)
*Variational inference (VI)

[Wang et al. 2016 ]



Bayesian Deep Learning

Applications Models Hinge Variables Learning
CDL [Wang et al.] {V} MAP
Bayesian CDL [Wang et al. ] 1V} Gibbs Samplin
RE;‘“jmme"der Ma};ginalized CDL [Lict al] VT MAD

ystems Symmetric CDL [ et al] V. U7 MAP
Collaborative Deep Ranking |[Ying et al.| Vi MAP

Topic Relational SDAE [Wang et al.| {S} MAP

Molzielq DPFA-GBN [Gan et al ] X} Hybrid MC

) DPFA-RBM [Gan et al. ] (X} Hybrid MC
Control Embed to Control [Watter et al.| {z¢, 2441} Variational Inference

[Wang et al. 2016 ]



A Principled Probabilistic Framework

Perception Component Task-Specific Component

Perception Variables @ @ @ @ @
Task Variables @ @ @

Hinge Variables @

[Wang et al. 2016 ]
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Relational Deep Learning: Graphical Model

Perception component: relational and deep representation learning
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Task-specific component: link prediction



Stacked Denoising Autoencoders (SDAE)
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SDAE solves the following optimization problem:

min X, — XolI% + A W, -,
in | I +3 3 Wil

where A is a regularization parameter and || - || denotes the
Frobenius norm.

[ Vincent et al. 2010 ]



Probabilistic SDAE

Graphical model:

Generative process:

Win ~ N (0, /\q,_ullKg) Generalized SDAE

by ~ N(0, A;llm) Notation:
Xl,j* ™~ N(U(Xl—l,j*Wz —+ bg)j . corrupted input

| .
X—c,j* ~ N(XL,j*; )\;118) @ clean mput

4 . .
\@ weights and biases

[ Wang et al. 2015 ]



Relational Deep Learning

Probabilistic SDAE

Modeling relation among nodes



Network of Probabilistic SDAE

Many interconnected probabilistic SDAEs with shared weights
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MAP Inference

maximizing the posterior probability is equivalent to
maximizing the joint log-likelihood
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MAP Inference

Prior (regularization) for link prediction parameters, weights,

and biases
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MAP Inference

Generating node features from content representation
with Gaussian offset
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MAP Inference

‘Generating’ clean input from the output of probabilistic SDAE
with Gaussian offset
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MAP Inference

Generating the input of Layer | from the output of
Layer |-1 with Gaussian offset
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MAP Inference

Generating links from Bernoulli distributions
parameterized by n and ¢
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Bayesian Treatment:
Generalized Variational Inference

log q;(Z;) = Eizjllogp(Xo, X¢, Z)| + const

q1(Z,) = q(W*): Variational distributions for weights/biases.

q2(Zy) = q(¢p;): Variational distributions for generated node features.

qs(Z3) = g(n): Variational distributions for parameters of the link prediction model.

qs(Z4) = q(£): Variational parameters to approximate the sigmoid function.

Use Laplace approximation rather than variational inference for weights/biases.



Example: Updating ¢ as a Product of Gaussians

Update ¢ for node i as a product of two Gaussians

Q(qbi‘XO,i*) ~ N(Cbi‘u’ia 3)
;=S 'm; + S 'm)
t=87tes

m;: Encoding generated by probabilistic SDAE.
First Gaussian

S;: Variance of probabilistic SDAE.

m’f: Weighted average of all yo ¢ ;..

Second Gaussian

S:: Variance of all po ¢
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Experiments: Settings
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Document Networks (e.g., citation networks)

datasets | # nodes | # links
citeulike-al 16,980 44,709
citeulike-t| 25,975 32,565
arXiv 27,770 352,807




Experiments: Link Rank and AUC
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Figure 2: Link rank and AUC of compared models for
citeulike-a. A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth
AUC: area under curve



Experiments: Link Rank and AUC
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Figure 3: Link rank and AUC of compared models for
citeulike-t. A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth
AUC: area under curve



Experiments: Link Rank and AUC

Link Rank
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Figure 4: Link rank and AUC of compared models for arXiv.
A 2-layer RDL is used.

Link rank: how high our predicted links rank in the ground truth
AUC: area under curve



Experiments: RDL Variants

Link rank of baselines (the first 3 columns) and
RDL variants (the last 4 columns) on three datasets (L = 4)

Method VAE+BLR  VFAE+BLR  SDAE+BLR | MAPRDL BSDAEI+BLR  BSDAE2+BLR  BayesRDL
citeulike-a | 980.81 960.15 092.48 495.97 849.02 761.57 473.59
citeulike-t 1599.62 1531.16 1356.85 951.31 1341.15 1310.12 911.31
arXiv 3367.25 3316.29 2916.18 2028.72 2947.79 2708.17 1982.84

VAE: Variational Autoencoder

VRAE: Variational Fair Autoencoder

BLR: Bayesian Logistic Regression

BSDAE1: Bayesian treatment of probabilistic SDAE (mean only)
BSDAE2: Bayesian treatment of probabilistic SDAE (mean and variance)
MAPRDL: RDL with MAP inference

BayesRDL: RDL with full Bayesian treatment



Experiments: Depth

Performance of RDL with different number of layers (MAP)

Link Rank AUC
RDL-1 RDL-2 RDL-3 | RDL-1 | RDL-2 | RDL-3
citeulike-a 25.74 495.97 488.41 0.939 0.964 0.963
citeulike-t | 2060.17 951.31 912.43 0.894 0.954 0.955
arXiv 5241.97 | 2080.72 | 2730.08 0.755 0.905 0.855

Performance of RDL with different number of layers (Bayesian treatment)

Link Rank AUC
RDL-1 RDL-2 RDL-3 | RDL-1 | RDL-2 | RDL-3
citeulike-a 789.85 473.59 471.47 0.946 0.971 0.970
citeulike-t 1904.83 911.31 867.78 0.906 0.956 0.960
arXiv 4965.01 | 1982.84 | 2612.12 0.801 0.914 0.866




Case Study: RDL and RTM
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t-SNE visualization of latent factors learned by RDL (left) and RTM (right).

Target article:
From DNA sequence to transcriptional behaviour: a quantitative approach

* (red): articles with links to the target article
O (blue): articles without links to the target article



Case Study: RDL

i Some bestselling books}|
i The 4-Hour Work Weeki
I Mary Bell's Complete |
] | Dehydrator Cookbook :

15

t-SNE visualization of latent factors learned by RDL.

Target article:
From DNA sequence to transcriptional behaviour: a quantitative approach



Case Study: RDL ang gRTM

Top 10 link predictions made by gRTM and RDL for two articles from citeulike-a

Query: Object class recognition by unsupervised scale-invariant learning
Layered depth images

Uszsing spin images for efficient object recognition in cluttered 3D scenes
Snakes: active contour models

Visual learning and recognition of 3-D objects from appearance
Contextual priming for object detection

% Visual categorization with bags of keypoints
1 Mon-parametric model for backeground subtraction
= Alignment by maximization of mutual information
Rapid object detection using a boosted cascade of simple features
W4: real-time surveillance of people and their activities
Distinctive image features from scale-invariant keypoints
visual learning and recognition of &mppcamncc
Object recognition with features inspired by visual cortex
Unsupervised learning of models for recognition
Titobust object recognition with cortex-like mechanisms
g Generaminathm methods for object recognition
= Using spin images for efficient object recognition in Cluttereq Hl) scenes

Learning generative visual models from few training examples
D object modeling and recognition using affine-invariant patmcs

A Bayesian approach to unsupervised one-shot learning of object categories

Key Concepts
—— QObject recognition
Unsupervised learning
Scale-invariant learning




Case Study: RDL ang gRTM

Top 10 link predictions made by gRTM and RDL for two articles from citeulike-a

Query: SCOP database in 2004: refinements integrate structure and sequence family data
Pfam: multiple sequence alignments and HMM-profiles of protein domains

Structure, function and evolution of multidomain proteins

Greengenes, a chimera-checked 165 rRNA gene database and workbench compatible with ARB
Nature of the protein universe

The CATH domain structure database and related resources

:Ej Phylogenetic classification of short environmental DNA fragments
j The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes
- LGA: a method for finding 3D similarities in protein structures

Amino acid substitution matrices from protein blocks

Multiple protein sequence alignment

The universal protein resource (UniProt)

E-MSD: an integrated data resource for bioinformatics

Gene3dD: comprehensive structural and functional annotation of genomes

The universal protein resource (UniProt) in 2010

Gene3D: modelling protein structure, function and evolution
g The universal protein Iman expanding universe of protein information
et Pfam: clans, web tools and services

The Pfam protein families database
The protein data bank
SCOP: a structural classification of proteins database

Key Concepts
Protein structures
Protein databases
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Conclusion

*First Bayesian DL model for link prediction
Joint Bayesian DL is beneficial
*Significant improvement on the state of the art

*RDL as representation learning



Future Work

*Multi-relational data (co-author & citation networks)
*Boost predictive performance
*Discover relationship between different networks

*GVI for other neural nets (CNN/RNN) and BayesNets
*pSDAE + link prediction
*pCNN + recommendation
*pRNN + community detection

*Replace probabilistic SDAE with other Bayesian neural nets
*Variational autoencoders

*Natural-parameter networks
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