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Recommender Systems

Observed preferences: 

To predict: 
Matrix completion

Rating matrix:
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Recommender Systems with Content

Content information:

Plots, directors, actors, etc.
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Modeling the Content Information

Handcrafted features Automatically

learn features

Automatically

learn features and

adapt for ratings
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Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning
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Deep Learning

Stacked denoising
autoencoders

Convolutional neural
networks

Recurrent neural
networks

Typically for i.i.d. data
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Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-i.i.d.

Collaborative deep learning (CDL)
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Contribution

Collaborative deep learning:

* deep learning for non-i.i.d. data

* joint representation learning and

collaborative filtering
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Contribution

Collaborative deep learning

Complex target:

* beyond targets like classification and regression

* to complete a low-rank matrix
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Contribution

Collaborative deep learning

Complex target

First hierarchical Bayesian models for 

deep hybrid recommender system
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Related Work
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• Not hybrid methods (ratings only)

RBM (single layer, Salakhutdinov et al., 2007)

I-RBM/U-RBM (Georgiev et al., 2013)

• Not using Bayesian modeling for joint learning

DeepMusic (van den Oord et al., 2013)

HLDBN (Wang et al., 2014)



Stacked Denoising Autoencoders (SDAE)

Corrupted input Clean input

[ Vincent et al. 2010 ]
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Probabilistic Matrix Factorization (PMF)
Graphical model:

Generative process:

Objective function if using MAP:

latent vector of item j

latent vector of user i

rating of item j from user i

Notation:

[ Salakhutdinov et al. 2008 ]
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Probabilistic SDAE

Generalized SDAE

Graphical model:

Generative process:

corrupted input

clean input

weights and biases

Notation:
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Collaborative Deep Learning (CDL)
Graphical model:

Collaborative deep learning SDAE

corrupted input

clean input

weights and biases

content representation

rating of item j from user i

latent vector of item j

latent vector of user i

Notation:Two-way interaction

•More powerful representation
•Infer missing ratings from content
•Infer missing content from ratings
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A Principled Probabilistic Framework

Perception Component Task-Specific Component

Perception Variables

Task Variables

Hinge Variables

[ Wang et al. TKDE 2016 ]
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CDL with Two Components
Graphical model:

Collaborative deep learning SDAE

corrupted input

clean input

weights and biases

content representation

rating of item j from user i

latent vector of item j

latent vector of user i

Notation:Two-way interaction

•More powerful representation
•Infer missing ratings from content
•Infer missing content from ratings
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Collaborative Deep Learning

Neural network representation for degenerated CDL
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Collaborative Deep Learning

Information flows from ratings to content
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Collaborative Deep Learning

Information flows from content to ratings
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Collaborative Deep Learning

Representation learning <-> recommendation 
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Learning

maximizing the posterior probability is equivalent to 
maximizing the joint log-likelihood
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Learning

Prior (regularization) for user latent vectors, weights, and biases
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Learning

Generating item latent vectors from content representation
with Gaussian offset
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Learning

‘Generating’ clean input from the output of probabilistic SDAE
with Gaussian offset
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Learning

Generating the input of Layer l from the output of Layer l-1
with Gaussian offset
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Learning

measures the error of predicted ratings
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Learning

If       goes to infinity, the likelihood simplifies to
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Update Rules
For U and V, use block coordinate descent:

For W and b, use a modified version of backpropagation:
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Datasets

Content information

Titles and abstracts Titles and abstracts Movie plots

[ Wang et al. KDD 2011 ]
[ Wang et al. IJCAI 2013 ]
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Evaluation Metrics

Recall:

Mean Average Precision (mAP):

Higher recall and mAP indicate better recommendation performance
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Recall@M

citeulike-t, sparse setting

citeulike-t, dense setting

Netflix, sparse setting

Netflix, dense setting

When the ratings 
are very sparse:

When the ratings 
are dense:
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Mean Average Precision (mAP)

Exactly the same as Oord et al. 2013, we set the cutoff point at
500 for each user.

A relative performance boost of about 50%
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Example User

Moonstruck

True Romance

Romance
Movies

Precision: 20% VS 30%
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Example User

Johnny English

American Beauty

Action &
Drama
Movies

Precision: 20% VS 50%
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Example User

Precision: 50% VS 90%
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Summary: Collaborative Deep Learning

Non-i.i.d (collaborative) deep learning

With a complex target

First hierarchical Bayesian models for 

hybrid deep recommender system

Significantly advance the state of the art
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[ Li et al., CIKM 2015 ]

Transformation to latent factors

Transformation to latent factors

Reconstruction error

CDL:

Marginalized CDL:

Marginalized CDL

Reconstruction error
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[ Ying et al., PAKDD 2016 ]

Collaborative Deep Ranking
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Generative Process: Collaborative Deep Ranking
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CDL Variants
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More details in http://wanghao.in/CDL.htm

http://wanghao.in/CDL.htm


Motivation:
• A more natural way, take in one 

word at a time, model documents 
as sequences

• Jointly model preferences and 
sequence generation under the 
BDL framework

“Collaborative recurrent autoencoder: 
recommend while learning to fill in the 
blanks”          [ Wang et al., NIPS 2016a ]
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Beyond Bag-of-Words: 
Documents as Sequences



Main Idea:
• Joint learning in the BDL framework
• Wildcard denoising for robust 

representation

“Collaborative recurrent autoencoder: 
recommend while learning to fill in the 
blanks”           [ Wang et al., NIPS 2016a]
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Beyond Bag-of-Words: 
Documents as Sequences



this a great idea this a great ideais

encoder RNN decoder RNN

wrong transition

this a great ideaisthis a great idea<wc>

encoder RNN decoder RNN

Direct

Denoising:

Wildcard

Denoising:

Sentence: This is a great idea. -> This is a great idea.
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Wildcard Denoising



Main Idea:
• Joint learning in the BDL framework
• Wildcard denoising for robust 

representation
• Beta-Pooling for variable-length 

sequences

“Collaborative recurrent autoencoder: 
recommend while learning to fill in the 
blanks”          [ Wang et al., NIPS 2016a ]
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Documents as Sequences
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length: 8

length: 6

length: 4

[ Wang et al., NIPS 2016a ]

Is Variable-Length Weight Vector Possible?
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0.08

0.18
0.22

0.16
0.21

0.10
0.04

0.01

X

=

8 length-3 
vectors

length-8
weight vector

one single
vector

Use the area of the beta distribution
to define the weights!

[ Wang et al., NIPS 2016a ]

Variable-Length Weight Vector with Beta Distributions
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0.13

X

=

6 length-3 
vectors

length-6
weight vector

one single
vector

Use the area of the beta distribution
to define the weights!

0.27 0.28
0.20

0.10
0.02

[ Wang et al., NIPS 2016a ]

Variable-Length Weight Vector with Beta Distributions
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• Joint learning in the BDL framework
• Wildcard denoising for robust representation
• Beta-Pooling for variable-length sequences

[ Wang et al., NIPS 2016a ]

Perception Component

Task-Specific Component

Graphical Model: Collaborative Recurrent Autoencoder



Incorporating Relational Information
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[ Wang et al. AAAI 2017 ]

[ Wang et al. AAAI 2015 ]



Probabilistic SDAE

Generalized SDAE

Graphical model:

Generative process:

corrupted input

clean input

weights and biases

Notation:
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Relational SDAE: Graphical Model

corrupted input

clean input

adjacency matrix

Notation:
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Relational SDAE: Two Components

Perception Component

Task-Specific Component
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Relational SDAE: Generative Process
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Relational SDAE: Generative Process
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Multi-Relational SDAE: Graphical Model

corrupted input

clean input

adjacency matrix

Notation:Product of Q+1 Gaussians

Multiple networks:
citation networks
co-author networks
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Network  A → Relational Matrix S

Relational Matrix  S →Middle-Layer Representations

Relational SDAE: Objective Function
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Update Rules
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From Representation to Tag Recommendation

59



Algorithm
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Datasets
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Sparse Setting, citeulike-a
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Case Study 1: Tagging Scientific Articles

Precision: 10% VS 60%
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Case Study 2: Tagging Movies (SDAE)

Precision: 30% VS 60%
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Case Study 2: Tagging Movies (RSDAE)

Does not appear in the tag lists of movies linked to
‘E.T. the Extra-Terrestrial’

Very difficult to discover this tag
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Topic  hierarchy Inter-document relation

BDL-Based Topic Models
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Perception component Task-Specific component

Relational SDAE as Deep Relational Topic Models

[ Wang et al. 2015 (AAAI) ]

Unified into a probabilistic relational model 

for relational deep learning



(Recap) Relational SDAE: Two Components

Perception Component

Task-Specific Component
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Using Relational Information as Observations

[ Wang et al. 2017 (AAAI) ]

Probabilistic SDAE

Modeling relation among nodes
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Be ‘Bayesian’ in
Collaborative Deep Learning



Motivation:
• Uncertainty estimation for 

reinforcement learning, active 
learning, etc.

• Robust for insufficient data and 
noise

• More accurate prediction

“Natural-Parameter Networks: A Class 
of Probabilistic Neural Networks”

70

Be Bayesian in BDL



What We Want:
• Solvable via back propagation
• Sampling-free during both training 

and testing
• Intuitive and easy to implement

“Natural-Parameter Networks: A Class 
of Probabilistic Neural Networks”
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Be Bayesian in BDL



neural networks

weights/neurons as points

natural-parameter networks

weights/neurons as distributions
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Weights/Neurons as Distributions



Take-home Messages

• Probabilistic graphical models for formulating both 
representation learning and inference/reasoning 
components

• Learnable representation serving as a bridge

• Tight, two-way interaction is crucial
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Thanks!

Q&A
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