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Recommender Systems 
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Observed preferences:  

To predict:  
Matrix completion 

Rating matrix: 



Recommender Systems with Content 
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Content information: 
Plots, directors, actors, etc. 



Modeling the Content Information 

Handcrafted features Automatically 
learn features 

Automatically 
learn features and 

adapt for ratings 
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1. Powerful features for content information 

Deep learning 

Modeling the Content Information 
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2. Feedback from rating information Non-i.i.d. 

Collaborative deep learning 



Deep Learning 

Stacked denoising 
autoencoders 

Convolutional neural 
networks 

Recurrent neural 
networks 
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Deep learning allows computational models that are composed of  
multiple processing layers to learn representations of data with  
multiple levels of abstraction. 

Bengio et al. 2015 



Deep Learning 

Stacked denoising 
autoencoders 

Convolutional neural 
networks 

Recurrent neural 
networks 
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Typically for i.i.d. data 
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1. Powerful features for content information 

Deep learning 

2. Feedback from rating information Non-i.i.d. 

Collaborative deep learning (CDL) 

Modeling the Content Information 
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Contribution 

Collaborative deep learning: 

 * deep learning for non-i.i.d. data 

 * joint representation learning and 

 collaborative filtering 
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Contribution 

Collaborative deep learning 

Complex target: 

 * beyond targets like classification and regression 

 * to complete a low-rank matrix 
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Contribution 

Collaborative deep learning 

Complex target 

First hierarchical Bayesian models for  

    hybrid deep recommender system 
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Contribution 

Collaborative deep learning 

Complex target 

First hierarchical Bayesian models for  

    hybrid deep recommender system 

Significantly advance the state of the art 
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Stacked Denoising Autoencoders (SDAE) 
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Corrupted input Clean input 

Vincent et al. 2010 
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Probabilistic Matrix Factorization (PMF) 
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Graphical model: 

Generative process: 

Objective function if using MAP: 

latent vector of item j 

latent vector of user i 

rating of item j from user i 

Notation: 

Salakhutdinov et al. 2008 
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Probabilistic SDAE 
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Generalized SDAE 

Graphical model: 

Generative process: 

corrupted input 

clean input 

weights and biases 

Notation: 
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Collaborative Deep Learning 
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Graphical model: 

Collaborative deep learning SDAE 

corrupted input 

clean input 

weights and biases 

content representation 

rating of item j from user i 

latent vector of item j 

latent vector of user i 

Notation: Two-way interaction 

•More powerful representation 
•Infer missing ratings from content 
•Infer missing content from ratings 
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Neural network representation for degenerated CDL 

Collaborative Deep Learning 
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Collaborative Deep Learning 

Information flows from ratings to content 
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Collaborative Deep Learning 

Information flows from content to ratings 
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Collaborative Deep Learning 

Reciprocal: representation and recommendation  
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Learning 
maximizing the posterior probability is equivalent to  
maximizing the joint log-likelihood 
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Learning 

Prior (regularization) for user latent vectors, weights, and biases 
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Learning 
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Generating item latent vectors from content representation 
with Gaussian offset 
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Learning 
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‘Generating’ clean input from the output of probabilistic SDAE 
with Gaussian offset 
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Learning 
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Generating the input of Layer l from the output of Layer l-1 
with Gaussian offset 
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Learning 
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measures the error of predicted ratings 
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Learning 
If       goes to infinity, the likelihood becomes  ¸s¸s
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Update Rules 
For U and V, use block coordinate descent: 

For W and b, use a modified version of backpropagation: 
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Datasets 
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Content information 

Titles and abstracts Titles and abstracts Movie plots 

Wang et al. 2011 
Wang et al. 2013 
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Evaluation Metrics 

Recall: 

Mean Average Precision (mAP): 
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Higher recall and mAP indicate better recommendation performance 
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Comparing Methods 
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Hybrid methods  
using BOW and  
ratings 

Loosely coupled;  
interaction is not 
two-way 

PMF+LDA 
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Recall@M 

citeulike-t, sparse setting 

citeulike-t, dense setting 

Netflix, sparse setting 

Netflix, dense setting 
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When the ratings  
are very sparse: 

When the ratings  
are dense: 
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Mean Average Precision (mAP) 
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Exactly the same as Oord et al. 2013, we set the cutoff point at 
500 for each user. 

A relative performance boost of about 50% 
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Number of Layers 
Sparse Setting 

Dense Setting 
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The best performance is achieved when the number of layers is 2 or 3 
(4 or 6 layers of generalized neural networks). 
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Example User 

Moonstruck 

True Romance 

Romance 
Movies 

Precision: 30% VS 20% 
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Example User 

Johnny English 

American Beauty 

Action & 
Drama 
Movies 

Precision: 50% VS 20% 
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Example User 

Precision: 90% VS 50% 
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Summary 

Non-i.i.d (collaborative) deep learning 

With a complex target 

First hierarchical Bayesian models for  

    hybrid deep recommender system 

Significantly advance the state of the art 
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Word2vec, tf-idf 

Sampling-based, variational inference 

Tagging information, networks 

Summary 
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Thank you! 

More results, code, and datasets: 
http://www.wanghao.in 

Hao Wang 
hwangaz@cse.ust.hk 
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