
Bayesian Deep Learning:
Basics, Framework, and Concrete Models

1

Hao Wang

Perception

2

Inference

•See (visual object recognition)
•Read (text understanding)
•Hear (speech recognition)

Perception: perceive the environment

•Think (inference & reasoning)

Perception

3

Inference

•See (visual object recognition)
•Read (text understanding)
•Hear (speech recognition)

Perception: perceive the environment

•Think (inference & reasoning)

Complex relations
Conditional dependencies & randomness

Perception

4

Inference

High dimensional input:

Text, Images, Videos

Deep Learning Graphical Models

5

[Wang et al. 2014]
[Wang et al. 2016]
[Wang et al. 2020]

P
er

ce
p

ti
o

n

Inference/reasoning

Deep Learning

Graphical Models

Desirable

6

P
er

ce
p

ti
o

n

Inference/reasoning

Deep Learning

Graphical Models

Bayesian Deep Learning (BDL)

[Wang et al. 2014]
[Wang et al. 2016]
[Wang et al. 2020]

7

Bayesian Deep Learning (BDL)

Deep component Graphical component

Probabilistic DL models Graphical models

Bayesian deep learning (BDL)

8

Bayesian Deep Learning (BDL)

•Maximum a posteriori (MAP)
•Markov chain Monte Carlo (MCMC)
•Variational inference (VI)

Deep component Graphical component

Probabilistic DL models Graphical models

Bayesian deep learning (BDL)

Medical images, e.g., MRI
Medical records
Various signals

Reasoning and inference

Deep component Graphical component

Bayesian deep learning (BDL)

Example: Medical Diagnosis

9

[Zhao*, Hoti*, Wang, Raghu, Katabi, Nature Medicine 2021]

[Wang et al., ICML 2020]

Uses video, plot, actors, etc.
Content understanding

Uses preferences, similarities
Recommendation

Deep component Graphical component

Bayesian deep learning (BDL)

Example: Movie Recommender Systems

10

[Wang et al., KDD 2015]

[Wang et al., NIPS 2016a]

BDL: A Principled Probabilistic Framework

Deep Component Graphical Component

11

Deep Variables

Graphical Variables

Hinge Variables

[Wang et al. TKDE 2016]

BDL: A Principled Probabilistic Framework

12

[Wang et al. TKDE 2016]
[Wang et al. CSUR 2020]

The whole model is jointly learned (end-to-end).

Deep Component Graphical Component

BDL Models for Different Applications

13

https://github.com/js05212/BayesianDeepLearning-Survey
[Wang et al. TKDE 2016]
[Wang et al. CSUR 2020]

Bayesian Deep Learning

14

A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets

Bayesian Deep Learning

15

A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

Bayesian Deep Learning

16

A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets

17

Probabilistic Graphical Models:
A Mini-Tutorial

Probabilistic Graphical Models: Simple Example

18

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Observed variables (given)

Latent variables & parameters to infer/learn

𝑀 Number of repetitions (Number of data points)

𝒙 ∈ 𝑅𝐷

𝝁 ∈ 𝑅𝐷

𝚺 ∈ 𝑅𝐷×𝐷

Probabilistic Graphical Models: Simple Example

19

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

𝒙 ∈ 𝑅𝐷

𝝁 ∈ 𝑅𝐷

𝚺 ∈ 𝑅𝐷×𝐷

Probabilistic Graphical Models: Nodes and Edges

20

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Variables (either observed or latent) or parameters :

Conditional dependency:

𝝁, 𝚺, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴

𝑝 𝒙 𝝁, 𝚺 = 𝑁(𝒙|𝝁, 𝚺)

Probabilistic Graphical Models: Generative Process

21

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Draw 𝒙𝒎~𝑁(𝝁, 𝚺)

Learning and Inference

22

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Learning: Given observed data, learn the unknown parameters.

𝒙 (𝑜𝑟 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴) 𝝁, 𝚺

Inference: Given observed data and parameters, infer the latent variables.

Not applicable in this simple example since we do not have latent variables.

Learning and Inference

23

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Learning: Given observed data 𝒙, learn the unknown parameters 𝝁, 𝚺.

𝝁 =
1

𝑀
෍

𝒎=1

𝑴

𝒙𝒎 , 𝚺 =
1

𝑀
෍

𝒎=1

𝑴

𝒙𝒎 − 𝝁 𝒙𝒎 − 𝝁 ⊤

Summary on Probabilistic Graphical Models

24

Gaussian Distribution Mixture of Gaussians

Probabilistic Graphical Models:
A Slightly More Complicated Example

25

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)

Generative Process for the Gaussian Model (Recap)

26

𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Generative process (of M data points)

For each 𝑚 = 1,2, … , 𝑀:
Draw 𝒙𝒎~𝑁(𝝁, 𝚺)

Mixture of Gaussians: Generative Process

27

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)

Generative process (of M data points)

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

𝜋 = [0.25, 0.25, 0.25, 0.25], 𝜋 = [1.0, 0, 0, 0], 𝜋 = [0.8, 0.2, 0, 0]

Mixture of Gaussians: Generative Process

28

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

Real-value K-dim vector:

𝝅 = [𝝅 1 ,…, 𝝅(𝑘), … , 𝝅 𝐾]

0 ≤ 𝝅 𝑘 ≤ 1, ෍

𝑘=1

𝐾

𝝅 𝑘 = 1

One-hot K-dim vector:

𝒛𝒎 = [𝒛𝒎
1

,…, 𝒛𝒎
(𝑘)

, … , 𝒛𝒎
𝐾

]

𝒛𝒎
𝑘

∈ {0,1}, ෍

𝑘=1

𝐾

𝒛𝒎
𝑘

= 1

Parameters for K gaussians:

𝝁𝒌, 𝜮𝒌 (𝑘 = 1,2, … , 𝐾)

Mixture of Gaussians: Factorization

29

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

Joint distribution expressed as:
𝑝 𝒙𝒎, 𝒛𝒎 = 𝑝 𝒛𝒎 𝑝(𝒙𝒎|𝒛𝒎)

Choose 1 of the K Gaussians:

𝑝 𝒛𝒎 = ෑ

𝑘=1

𝐾

(𝝅
(𝒌)

)𝒛𝒎
(𝒌)

Sample from the chosen Gaussian (k-th):

𝑝 𝒙𝒎 𝒛𝒎
𝒌

= 1 = 𝑁 𝒙𝒎|𝝁𝒌, 𝚺𝒌

𝑝 𝒙𝒎 𝒛𝒎 = ෑ

𝑘=1

𝐾

𝑁 𝒙𝒎|𝝁𝒌, 𝜮𝒌
𝒛𝒎

(𝒌)

Mixture of Gaussians : Nodes and Edges

30

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)

Variables (either observed or latent) or parameters :

Conditional dependency:

𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴 𝒛𝟏, 𝒛𝟐, … , 𝒛𝑴 𝝁𝒌, 𝚺𝐤,

𝑝 𝒛𝒎|𝝅 𝑎𝑛𝑑 𝑝(𝒙𝒎|𝒛𝒎, 𝝅, {𝝁𝒌, 𝚺𝐤})

Mixture of Gaussians :
Learning and Inference

31

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Learning: Given observed data, learn the unknown parameters.

𝒙𝒎 (𝑜𝑟 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴) 𝝅, 𝝁𝒌, 𝚺𝐤

Inference: Given observed data and parameters, infer the latent variables.

Real-value K-dim vector:

𝝅 = [𝝅 1 ,…, 𝝅(𝑘), … , 𝝅 𝐾]

0 ≤ 𝝅 𝑘 ≤ 1, ෍

𝑘=1

𝐾

𝝅 𝑘 = 1

One-hot K-dim vector:

𝒛𝒎 = [𝒛𝒎
1

,…, 𝒛𝒎
(𝑘)

, … , 𝒛𝒎
𝐾

]

𝒛𝒎
𝑘

∈ {0,1}, ෍

𝑘=1

𝐾

𝒛𝒎
𝑘

= 1

Parameters for K gaussians:

𝝁𝒌, 𝜮𝒌 (𝑘 = 1,2, … , 𝐾)

𝒙𝒎 𝝅, 𝝁𝒌, 𝚺𝐤 𝒛𝒎

32

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

33

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎 given the current parameters.

Inference and Learning: E Step

𝛾 𝒛𝒎
𝒌

= 𝑝 𝒛𝒎
𝒌

= 1 𝒙𝒎, 𝝅, {𝝁𝒌, 𝚺𝒌}

∝ 𝑝 𝒛𝒎
𝒌

= 1 𝑝 𝒙𝒎 𝒛𝒎
𝒌

= 1 = 𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

E Step tries to infer the probability that
this point 𝒙𝟏 belongs to each Gaussian.

𝛾 𝒛𝟏
𝟏

is large.

𝛾 𝒛𝟏
𝟐

, 𝛾 𝒛𝟏
𝟑

, 𝛾 𝒛𝟏
𝟒

are small.

෍
𝑘=1

𝐾

𝛾 𝒛𝒎
𝒌

= 1

34

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎 given the current parameters.

Inference and Learning: E Step

𝛾 𝒛𝒎
𝒌

= 𝑝 𝒛𝒎
𝒌

= 1 𝒙𝒎, 𝝅, {𝝁𝒌, 𝚺𝒌}

=
𝑝 𝒛𝒎

𝒌
= 1 𝑝 𝒙𝒎 𝒛𝒎

𝒌
= 1

σ𝑗=1
𝐾 𝑝 𝒛𝒎

𝒋
= 1 𝑝 𝒙𝒎 𝒛𝒎

𝒋
= 1

=
𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

σ𝑗=1
𝐾 𝝅 𝒋 𝑁(𝒙𝒎|𝝁𝒋, 𝚺𝒋)

Bayes’ Rule:

𝑝 𝑧 𝑥 =
𝑝(𝑥, 𝑧)

𝑝(𝑥)
=

𝑝 𝑧 𝑝(𝑥|𝑧)

σ𝑧 𝑝(𝑥, 𝑧)
=

𝑝 𝑧 𝑝(𝑥|𝑧)

σ𝑧 𝑝 𝑧 𝑝(𝑥|𝑧)

35

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Inference and Learning: M Step

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

𝝁𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

)𝒙𝒎

where 𝑀𝑘 = σ𝑚=1
𝑀 𝛾(𝒛𝒎

𝒌
)

Intuition for updating 𝝁𝒌:

(a) Gather data points 𝒙𝒎 which are assigned
to the same Gaussian, and compute their average

(b) Data points that belong to the Gaussian ‘more’

will have larger weight 𝛾 𝒛𝒎
𝒌

36

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Inference and Learning: M Step

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

𝝁𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

)𝒙𝒎

𝚺𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

) 𝒙𝒎 − 𝝁𝒌 𝒙𝒎 − 𝝁𝒌
⊤

𝝅(𝒌) =
𝑀𝑘

𝑀

where 𝑀𝑘 = σ𝑚=1
𝑀 𝛾(𝒛𝒎

𝒌
)

37

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

One last problem:
What convergence criterion to use?

38

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

Likelihood for 𝒙𝒎: 𝑝 𝒙𝒎 = σ𝒛𝒎
𝑝 𝒛𝒎 𝑝(𝒙𝒎|𝒛𝒎) = σ𝑘=1

𝐾 𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

Log-likelihood for M data points: L = σ𝑚=1
M log[σ𝑘=1

𝐾 𝝅 𝒌 𝑁 𝒙𝒎|𝝁𝒌, 𝚺𝐤]

39

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

40

Mixture of Gaussians: Visualization

Summary on Probabilistic Graphical Models

41

Gaussian Distribution Mixture of Gaussians

Summary on Learning and Inference Algorithms

42

Maximum Likelihood Estimation (MLE) EM

Summary on Probabilistic Graphical Models

43

Gaussian Distribution Mixture of Gaussians

Probabilistic Matrix Factorization (PMF)

The Rating Prediction Problem
for Recommender Systems

44

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

m
o

v
ie

s

- unknown rating - rating between 1 to 5

The Rating Prediction Problem
for Recommender Systems

45

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

m
o

v
ie

s

Probabilistic Matrix Factorization:
Generative Process

46

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Generative Process

2. For each item j:
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i:
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗):

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

Notation

𝜎𝑈, 𝜎𝑉 , 𝜎 are hyperparameters

Probabilistic Matrix Factorization:
Generative Process - Factorization

47

Generative Process

2. For each item j:
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i:
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗):

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

𝑝 𝑅, 𝑈, 𝑉 𝜎, 𝜎𝑈, 𝜎𝑉

= 𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

users

m
o

v
ie

s

Probabilistic Matrix Factorization:
Learning and Inference

48

Learning: Given observed data, learn the unknown global parameters.

Inference: Given observed data and (hyper)parameters, infer the latent variables.

𝑅𝑖𝑗 𝜎𝑈 , 𝜎𝑉, 𝜎 𝑈𝑖 , 𝑉𝑗

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Notation

Not applicable since 𝜎𝑈, 𝜎𝑉 , 𝜎 are fixed (hyperparameters)

Probabilistic Matrix Factorization:
Maximum A Posteriori (MAP) Inference

49

Posterior distribution of U and V:

𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 =
𝑝(𝑈, 𝑉, 𝑅|𝜎2, 𝜎𝑉

2, 𝜎𝑈
2)

𝑝(𝑅|𝜎2, 𝜎𝑉
2, 𝜎𝑈

2)
=

𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

𝑝(𝑅|𝜎2, 𝜎𝑉
2, 𝜎𝑈

2)

Constant 𝐶
The log of the posterior distribution of U and V becomes:

log 𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 = log 𝑝(𝑅|𝑈, 𝑉, 𝜎) + log 𝑝 𝑈 𝜎𝑈 + log 𝑝 𝑉 𝜎𝑉 + 𝐶

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Notation

Probabilistic Matrix Factorization:
Generative Process (Recap)

50

Generative Process

2. For each item j:
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i:
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗):

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

𝑝 𝑅, 𝑈, 𝑉 𝜎, 𝜎𝑈, 𝜎𝑉

= 𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

users

m
o

v
ie

s

Probabilistic Matrix Factorization:
Maximum A Posteriori (MAP) Inference

51

𝐼𝑖𝑗 , 𝜎, 𝜎𝑈, 𝜎𝑉 , 𝐶 are constants.

The log of the posterior distribution of U and V becomes:

log 𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 = log 𝑝(𝑅|𝑈, 𝑉, 𝜎) + log 𝑝 𝑈 𝜎𝑈 + log 𝑝 𝑉 𝜎𝑉 + 𝐶

Probabilistic Matrix Factorization:
Maximum A Posteriori (MAP) Inference

52

Maximizing the log-posterior over item vectors 𝑉𝑗 and user vectors 𝑈𝑖 when

fixing the hyperparameters (i.e. the observation noise variance 𝜎 and prior

variances 𝜎𝑈, 𝜎𝑉) is equivalent to minimizing the sum-of-squared-errors

objective function with quadratic regularization terms:

where 𝜆𝑈 = 𝜎2/𝜎𝑈, 𝜆𝑉 = 𝜎2/𝜎𝑉, and || ⋅ ||𝐹𝑟𝑜 denotes the Frobenius norm.

Probabilistic Matrix Factorization:
Maximum A Posteriori (MAP) Inference

53

Initialize 𝑈𝑖 and 𝑉𝑗

For each iteration t = 1:T do

For each user i = 1:N do

𝑈𝑖 = 𝑈𝑖 − 𝜌𝑡
𝜕𝐸

𝜕𝑈𝑖

For each item j = 1:M do

𝑉𝑗 = 𝑉𝑗 − 𝜌𝑡
𝜕𝐸

𝜕𝑉𝑗

How to find the 𝑈𝑖 and 𝑉𝑗 that minimize 𝐸? Use gradient descent!

Probabilistic Matrix Factorization:
Learning or Inference?

54

(Global) parameters 𝜎𝑉, 𝜎𝑈 , and 𝜎 are fixed (we treat them
as hyperparameters that are manually set).

We are trying to estimate (local) latent variables 𝑉𝑗 and 𝑈𝑖.

Answer: Inference.

Probabilistic Matrix Factorization (PMF):
Experimental Results

55

Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance

and harder to overfit

Logistic PMF: Even better

performance

(RMSE: Difference between predicted and ground-truth ratings.)

Logistic PMF:
Maximum A Posteriori (MAP) Inference

56

Use a logistic function on the inner product

𝑈𝑖
𝑇𝑉𝑗 → 𝑔(𝑈𝑖

𝑇𝑉𝑗),

where the logistic (sigmoid) function 𝑔 𝑥 = 1/(1 + exp −𝑥)

Probabilistic Matrix Factorization (PMF):
Experimental Results

57

Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance

and harder to overfit

Logistic PMF: Even better

performance

Bayes PMF: Best performance

Probabilistic Matrix Factorization (PMF)

58

(Global) parameters 𝜎𝑉, 𝜎𝑈 , and 𝜎 are fixed (we treat them
as hyperparameters that are manually set).

Can we make the parameters learnable?

Bayesian Probabilistic Matrix Factorization (BPMF)

59

PMF Bayesian PMF

𝑁 𝜇𝑉 , Λ𝑉
−1 : Λ𝑉 is the precision matrix, Λ𝑉

−1 is the covariance matrix

Probabilistic Matrix Factorization:
Generative Process (Recap)

60

Generative Process

2. For each item j:
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i:
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗):

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎𝐼)

Bayesian Probabilistic Matrix Factorization (BPMF):
Generative Process

61

Generative Process

1. Generate user precision matrix ΛU~𝑊(Λ𝑈|𝑊0, 𝜈0)
2. Generate user mean 𝜇𝑈~𝑁(𝜇𝑈|𝜇0, 𝛽0Λ𝑈

−1)
3. For each user i:

Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|𝜇𝑈 , Λ𝑈
−1)

7. For each user-item pair (𝑖, 𝑗):

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝛼−1)

4. Generate item precision matrix ΛV~𝑊(Λ𝑉|𝑊0, 𝜈0)
5. Generate item mean 𝜇𝑉~𝑁(𝜇𝑉|𝜇0, 𝛽0Λ𝑉

−1)
6. For each item j:

Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|𝜇𝑉 , Λ𝑉
−1)

Bayesian PMF

In a Gaussian distribution, 𝑁(𝜇, Σ),
Σ is the covariance matrix
and Σ−1 is the precision matrix

Wishart distribution

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference

62

Bayesian PMF
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 ,
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}

(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}

Learning: Given the data 𝑅𝑖𝑗,

estimate the optimal parameters
Λ𝑈 , 𝜇𝑈 , Λ𝑉 , 𝜇𝑉

Inference: Given the data 𝑅𝑖𝑗 and the

learned parameters Λ𝑈, 𝜇𝑈, Λ𝑉 , 𝜇𝑉,
infer the latent variables for each user
and item 𝑈𝑖 , 𝑉𝑗

How to perform learning and inference?

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

63

Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 ,
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

64

Updating user i’ variable 𝑼𝒊

where

𝐼𝑖𝑗 = 1 if user i rated movie j

𝐼𝑖𝑗 = 0 if user i did not rate movie j

User i rated more movies

→ More 𝐼𝑖𝑗 = 1

→ This term gets larger

→ The precision matrix Λ𝑖
∗ gets

larger

→ The covariance matrix Λ𝑖
∗ −1gets

smaller

→ The model is more confident

about the distribution.

Sampling User i’s Latent Variable 𝑼𝒊

65

The two dimensions with the highest variance are shown for two users

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

66

where

Weighted average of all the item

latent variables 𝑉𝑗

The weight for item j’s variable 𝑉𝑗 is

the rating user i gives item j, 𝑅𝑖𝑗

An item j is ignored if user i did not

rate it (𝐼𝑖𝑗 = 0)

Updating user i’ variable 𝑼𝒊

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

67

Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 ,
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

68

where

Weighted average of 𝜇0 and ഥ𝑈 (𝜇0

is a hyperparameter)

ഥ𝑈 is the average of all the user

latent variables 𝑈𝑖

The weight for 𝜇0 is 𝛽0 (𝜇0 is a

hyperparameter)

The weight for ഥ𝑈 is N (N is the

number of users)

Updating (global) parameters 𝚯𝐔 = {𝝁𝑼, 𝚲𝐔}

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

69

where

𝛽0 is a hyperparameter (which is

fixed)

N is the number of users

If we have more users, 𝛽0
∗ will get

larger,

the covariance 𝛽0
∗Λ𝑈

−1 will get

smaller

The model is more confident about

the distribution on 𝜇𝑈.

Updating (global) parameters 𝚯𝐔 = {𝝁𝑼, 𝚲𝐔}

Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

70

Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 ,
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

We can update the latent variables and

parameters similarly on the item side.

After Learning, How to Make Predictions

71

These K samples 𝑈𝑖
𝑘

, 𝑉𝑗
(𝑘)

are generated by running K
additional iterations after the
Gibbs sampling algorithm
converges

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

PMF versus Bayesian PMF

72

PMF Bayesian PMF

Use MAP inference to get

point estimate of 𝑈𝑖 and 𝑉𝑗

given the data 𝑅𝑖𝑗

Use Bayesian inference to

get the whole posterior

distribution of 𝑈𝑖 and 𝑉𝑗 given

the data 𝑅𝑖𝑗

Variances 𝜎𝑈, 𝜎𝑉 are fixed as

hyperparameters
Covariances Λ𝑈

−1, Λ𝑉
−1 are

learnable

Harder to overfit and better

performance
Easier to overfit

Bayesian Probabilistic Matrix Factorization (BPMF):
Experimental Results

73

Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance

and harder to overfit

Logistic PMF: Even better

performance

Bayes PMF: Best performance

Summary on Probabilistic Graphical Models

74

Gaussian Distribution Mixture of Gaussians

PMF Bayesian PMF

Summary on Learning and Inference Algorithms

75

Maximum Likelihood Estimation (MLE) EM

MAP Gibbs Sampling

Bayesian Deep Learning

76

A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets

Neural Networks

77

𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝐿𝑖 = (𝑓𝜃 𝒙𝒊 − 𝑦)𝟐

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient descent (SGD):

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

𝐿 = Σi=1
𝑁 1

𝑁
(𝑓𝜃 𝒙𝒊 − 𝑦𝑖)𝟐

Bayesian Neural Networks

78

𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝒙 𝑦

𝜽𝜎

𝑁

Neural Network Bayesian Neural Network

Generative Process:
Generate 𝜃~p 𝜃 σ
Generate y~p(y|𝜃, x)

Bayesian Neural Networks

79

Learning: Given data points
𝒙𝒊, 𝑦𝑖 and hyperparameter
𝜎, estimate the distribution
of neural network
parameters 𝜃, i.e., 𝑝(𝜃|𝑥, 𝑦)

𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝒙 𝑦

𝜽𝜎

𝑁

Neural Network Bayesian Neural Network

How to learn the distribution of 𝜃?

Bayesian Neural Networks
with Stochastic Gradient Langevin Dynamics (SGLD)

80

𝒙 𝑦

𝜽𝜎

𝑁

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient Langevin dynamics (SGLD):

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

SGD:
𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

Bayesian Neural Networks
with SGLD

81

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using SGLD:

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

Gaussian noise with the variance equal to learning rate

Bayesian Neural Networks
with SGLD

82

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using SGLD:

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

L2 regularization term

Bayesian Neural Networks
with SGLD

83

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient descent:

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

After convergence, sampling from 𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡 is equivalent to
sampling from true posterior distribution of NN parameters 𝑝(𝜃|𝑥, 𝑦)

Bayesian Neural Networks
with SGLD

84

Δ𝜃𝑡 = −
𝜖𝑡

2

𝜕 log 𝑝(𝜃|𝜎)

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕 log 𝑝(𝑦|𝑥𝑡𝑖 , 𝜃)

𝜕𝜃
+ 𝜂𝑡

After convergence, sampling from 𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡 is equivalent to
sampling from true posterior distribution of NN parameters 𝑝(𝜃|𝑥, 𝑦)

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜇 = 0, 𝜎 = 1 → log 𝑓(𝑥) = −
1

2
𝑥2 + 𝐶

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011

log 𝑝(𝜃|𝑥, 𝑦, 𝜎) = log 𝑝(𝜃|𝜎) + log 𝑝(𝑦|𝑥, 𝜃, 𝜎) + 𝐶

Bayesian Neural Networks with SGLD:
Experimental Results

85

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011

UCI adult dataset;
32561 observations and 123 features;
classification task.

Bayesian Neural Networks with SGLD:
Experimental Results

86

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011
Bayesian Dark Knowledge, Korattikara et al., NIPS 2015

MNIST dataset;
60K observations and 784 features;
classification task.

SGD Dropout SGLD

1.83 1.51 1.27

Table: Test set misclassification rate on MNIST for
different methods using a 784-400-400-10 MLP.

Bayesian Neural Networks with SGLD:
Price to Pay

87

1. Storage and Memory
Store multiple copies of neural network parameters

2. Computation Time
Multiple passes of feedforward inferences 𝑓(𝑥|𝜃𝑡)

After Learning Bayesian PMF,
How to Make Predictions (Recap)

88

These K samples 𝑈𝑖
𝑘

, 𝑉𝑗
(𝑘)

are generated by running K
additional iterations after the
Gibbs sampling algorithm
converges

Bayesian Neural Networks with SGLD:
Price to Pay

89

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011
Bayesian Dark Knowledge, Korattikara et al., NIPS 2015

1. Store multiple copies of neural network parameters

2. Multiple passes of feedforward inferences 𝑓(𝑥|𝜃𝑡)

𝐸[𝑓 𝑥 𝜃𝑡) ≈
1

𝑇
෍

𝑡=1

𝑇

𝑓(𝑥|𝜃𝑡)

Need T times the storage/memory cost and

computation cost

Bayesian Deep Learning

90

A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets

BDL: A Principled Probabilistic Framework (Recap)

Deep Component Graphical Component

91

Deep Variables

Graphical Variables

Hinge Variables

[Wang et al. TKDE 2016]

Bayesian Deep Learning

92

A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[Wang et al., KDD 2015]

[Wang et al., NIPS 2016a]

Recommender Systems

Observed preferences:
Matrix completion

Rating matrix:

93

Recommender Systems

Observed preferences:

To predict:
Matrix completion

Rating matrix:

94

Recommender Systems with Content

Content information:

Plots, directors, actors, etc.

95

Sparse rating matrix

Modeling the Content Information

Handcrafted features Automatically
learn features

Automatically
learn features and

adapt for ratings

96

Prior work Our work

Modeling the Content Information

1. Powerful features for content information

Deep learning

97

Deep Learning

Stacked denoising
autoencoders

Convolutional neural
networks

Recurrent neural
networks

Typically for independent data points
i.e., no correlation between users and items

98

Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-independent

Collaborative deep learning (CDL)

99

Challenges

100

1. Probabilistic deep learning models as a deep component

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation

Challenge 1

101

1. Probabilistic deep learning models as a deep component

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation

Challenge 1
Step 1 of 2: Autoencoder (AE)

Content
(e.g., documents)

102

𝑿𝟐: Middle-Layer representation

Content
(e.g., documents)

Challenge 1
Step 2 of 2: Probabilistic Autoencoder

103

Probabilistic Autoencoder: Gaussian noise after each nonlinear transformation

Probabilistic
autoencoder:

(ours)

Standard
autoencoder:

[Wang et al. KDD 2015]

Challenge 1
Step 2 of 2: Probabilistic Autoencoder

104

[Wang et al. KDD 2015]

𝑿𝟐: Middle-Layer representation

Probabilistic Autoencoder

Challenge 1
Step 2 of 2: Probabilistic Autoencoder

105

[Wang et al. KDD 2015]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Probabilistic Autoencoder

Challenge 1
Step 2 of 2: Probabilistic Autoencoder

106

[Wang et al. KDD 2015]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Latent variables & parameters to learn

Probabilistic Autoencoder

Challenge 1
Step 2 of 2: Probabilistic Autoencoder

107

[Wang et al. KDD 2015]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Latent variables & parameters to learn

𝐽 Number of documents

Probabilistic Autoencoder

Challenge 1

108

1. Probabilistic deep learning models as a deep component

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation

Challenge 2

109

1. Probabilistic deep learning models as a deep component

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation

Challenge 2
Step 1 of 4: Start from Middle-Layer Representation

110

[Wang et al. KDD 2015]

𝑿𝟐: Middle-Layer representation

Start from probabilistic Autoencoder

111

[Wang et al. KDD 2015]

Generate the latent vector for item j from 𝑿𝟐 :

Challenge 2
Step 2 of 4: Generate Item j’s Latent Vector 𝒗𝒋

112

[Wang et al. KDD 2015]

Generate the latent vector for user i:

Challenge 2
Step 3 of 4: Generate User i’s Latent Vector 𝒖𝒊

113

[Wang et al. KDD 2015]

Generate the rating user i gives item j:

Challenge 2

Step 4 of 4: Generate Ratings 𝑹𝒊𝒋 from 𝒖𝒊
𝑻𝒗𝒋

114

[Wang et al. KDD 2015]

Generate the rating user i gives item j:

Graphical Component

Challenge 2

Step 4 of 4: Generate Ratings 𝑹𝒊𝒋 from 𝒖𝒊
𝑻𝒗𝒋

Overview: Collaborative Deep Learning (CDL)

Graphical model:

115

𝜆𝑤, 𝜆𝑛, 𝜆𝑣, 𝜆𝑢:
hyperparamters to control the variance of Gaussian distributions

BDL: A Principled Probabilistic Framework (Recap)

Deep Component Graphical Component

116

Deep Variables

Graphical Variables

Hinge Variables

[Wang et al. TKDE 2016]

Graphical Model of CDL with Two Components

Collaborative deep learning

117

Graphical Model of CDL with Two Components

Collaborative deep learning

Trained end-to-end

•Boost each other’s performance
•More powerful representation
•Infer missing ratings from content
•Infer missing content from ratings

118

Boost
representation
learning

Boost
recommendation
accuracy

Collaborative Deep Learning

Neural network representation for degenerated CDL

119

Collaborative Deep Learning

Information flows from ratings to content

120

Collaborative Deep Learning

Information flows from content to ratings

121

Collaborative Deep Learning

Representation learning <-> recommendation

122

Datasets

Content information

Titles and abstracts Titles and abstracts Movie plots

[Wang et al. KDD 2011]
[Wang et al. IJCAI 2013]

123

Evaluation Metrics

Recall:

Mean Average Precision (mAP):

Higher recall and mAP indicate better recommendation performance

124

125

Recall@M in citeulike-t

126

Recall@M in citeulike-t

x-axis: number of recommended items M

127

Recall@M in citeulike-t

x-axis: number of recommended items M

y-axis:
recall@M

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑡𝑒𝑚𝑠

128

Recall@M in citeulike-t

CTR & DeepMusic
best baselines

x-axis: number of recommended items M

y-axis:
recall@M

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑡𝑒𝑚𝑠

129

Recall@M in citeulike-t

Boost recall
from 46% to 54%

Our method: CDL

8% absolute improvement

130

Recall@M in citeulike-t (sparse ratings)

Boost recall

from 21% to 35%

14% absolute improvement

Sparse ratings

131

Sparse rating matrix

Sparse ratings

Content information:

Plots, directors, actors, etc.

132

Sparse rating matrix

Mean Average Precision (mAP)

Exactly the same as Oord et al. 2013, we set the cutoff point at
500 for each user.

A relative performance boost of about 50%

133

[Wang et al. KDD 2015]

134

Recommender Systems and Revenue

35%

[From McKinsey & Company]

of the revenue comes from recommendations

135

$177 Billion 35% $62 Billion

[From McKinsey & Company]

× =

Recommender Systems and Revenue

(Yearly Sales Revenue)

136

1% $620 Million

[From McKinsey & Company]

Recommender Systems and Revenue

Example User

Moonstruck

True Romance

Romance
& Drama
Movies

Precision: 20% VS 30%

137

(baseline)

(ours)

movies watched

movies watched

Example User

Johnny English

American Beauty

Action &
Drama
Movies

Precision: 20% VS 50%

138

(baseline)

(ours)

movies watched

movies watched

Example User

Precision: 50% VS 90%

139

(baseline)

(ours)

movies watched

movies watched

Learning of CDL

140

Probabilistic Matrix Factorization:
Maximum A Posteriori (MAP) Inference (Recap)

141

Maximizing the log-posterior over item vectors 𝑉𝑗 and user vectors 𝑈𝑖 when

fixing the hyperparameters (i.e. the observation noise variance 𝜎 and prior

variances 𝜎𝑈, 𝜎𝑉) is equivalent to minimizing the sum-of-squared-errors

objective function with quadratic regularization terms:

where 𝜆𝑈 = 𝜎2/𝜎𝑈, 𝜆𝑉 = 𝜎2/𝜎𝑉, and || ⋅ ||𝐹𝑟𝑜 denotes the Frobenius norm.

Collaborative Deep Learning

142

Graphical Model

Generative Process

Learning

maximizing the posterior probability of U and V
is equivalent to maximizing the joint log-likelihood

143

Learning

Prior (regularization) for user latent vectors, weights, and biases

144

Learning

Generating item latent vectors from content representation
with Gaussian offset

145

Learning

‘Generating’ clean input from the output of probabilistic SDAE
with Gaussian offset

146

Learning

Generating the input of Layer l from the output of Layer l-1
with Gaussian offset

147

Learning

measures the error of predicted ratings

148

Learning

If goes to infinity, the likelihood simplifies to

149

Update Rules
For U and V, use block coordinate descent:

For W and b, use a modified version of backpropagation:

150

Brief Introduction for
Extensions of CDL/CRAE

151

[Ying et al., PAKDD 2016]

Collaborative Deep Ranking

152

Generative Process: Collaborative Deep Learning (Recap)

153

Generative Process: Collaborative Deep Ranking

154

Both item content and user attributes
User attributes: age, gender, occupation, country,
city, geolacation, domain, etc [Li et al., CIKM 2015]

Symmetric CDL

155

Other Extensions of CDL

⚫Word2vec, tf-idf

⚫Sampling-based, variational inference

⚫Tagging information, networks

156

Summary of Collaborative Deep Learning

⚫A new probabilistic formulation for deep

learning models (Challenge 1)

⚫First hierarchical Bayesian models for deep

hybrid recommender systems (Challenge 2)

⚫Significant performance improvement over

the state of the art

157

158

Beyond Bag-of-Words

High dimensional sparse vector

• Ignore word order

• No local context

Bag-of-Words:

159

Want representation
Aware of sequential relation of words
Robust to missing words

Instead of Bag-of-Words

160

Recurrent
autoencoder

Feedforward
autoencoder

this a great ideaisthis a great ideais

encoder RNN decoder RNN

Document as a Sequence

Challenges:
• RNN encoder may learn wrong

transition between words

“Collaborative recurrent autoencoder:
recommend while learning to fill in the
blanks” [Wang et al., NIPS 2016a]

161

Challenge 1: Encoder Learns Wrong Transition

Sentence: This is a great idea.

162

Challenge 1: Encoder Learns Wrong Transition

this a great idea this a great ideais

encoder RNN decoder RNN

wrong transitionDirect

Denoising:

Sentence: This is a great idea. -> This is a great idea.

163

Challenge 1: Encoder Learns Wrong Transition

RNN encoder learns wrong transition between ‘this’ and ‘a’

this a great idea this a great ideais

encoder RNN decoder RNN

wrong transition

this a great ideaisthis a great idea<wc>

encoder RNN decoder RNN

Direct

Denoising:

Wildcard

Denoising:

Sentence: This is a great idea. -> This is a great idea.

164

Wildcard Denoising: Avoiding Wrong Transition

“Collaborative recurrent autoencoder:
recommend while learning to fill in the
blanks” [Wang et al., NIPS 2016a]

165

Challenges:
• RNN encoder may learn wrong

transition between words
• Pool a variable-length sequence

into a fixed-length vector

Challenge 2: Variable-Length Vector for Pooling

166

length: 8

length: 6

length: 4

[Wang et al., NIPS 2016a]

Challenge 2: Variable-Length Vector for Pooling

Thank you very much Thank you very much

Thanks a lot Thanks a lot

Thank you Thank you

167

length: 8

[Wang et al., NIPS 2016a]

Challenge 2: Variable-Length Vector for Pooling

Thank you very much Thank you very much

Straight-forward approach averages or sums the vectors

length: 6

Thanks a lot Thanks a lot

But different words should have different weights!

➔ Need to learn a variable-length weight vector

168

0.08

0.18
0.22

0.16
0.21

0.10
0.04

0.01

X

=

8 vectors

length-8
weight vector

one single
vector

Use the area of the beta distribution to define the weights!

[Wang et al., NIPS 2016a]

Challenge 2:
Variable-Length Weight Vector with Beta Distributions

Thank you very much Thank you very much

169

0.13

X

=

6 vectors

length-6
weight vector

one single
vector

0.27 0.28
0.20

0.10
0.02

[Wang et al., NIPS 2016a]

Thanks a lot Thanks a lot

Challenge 2:
Variable-Length Weight Vector with Beta Distributions

Use the area of the beta distribution to define the weights!

170

Why Beta Distribution?

Beta distributions

Parameters

Beta distributions

Parameters

Because by learning two parameters a, b,
we can generate different variable-length weight vectors!

171

• First model for joint recommendation and sequence generation
• Wildcard denoising for robust representation (Challenge 1)
• Beta-Pooling for variable-length sequences (Challenge 2)

[Wang et al., NIPS 2016a]

Deep Component

Graphical Component

Overview: Current Model

172

Quantitative Comparison: Recall

Previous Version

173

Quantitative Comparison: Recall

Boost recall
from 54% to 58%

Current Version

174

Quantitative Comparison: mAP

175

[Wang et al., NIPS 2016a]

Case Study: Comparing Previous and Current Version

176

[Wang et al., NIPS 2016a]

Case Study: Comparing Previous and Current Version

177

[Wang et al., NIPS 2016a]

Case Study: Comparing Previous and Current Version

178

[Wang et al., NIPS 2016a]

Case Study: Comparing Previous and Current Version

Precision: 60%

179

[Wang et al., NIPS 2016a]

Case Study: Comparing Previous and Current Version

Precision: 60% VS 20%

180

[Wang et al., NIPS 2016a]

Results from Previous Version

Bioinformatics

Computer Vision

Programming Language

Incorrect Recommendations

User Profiling & Information Retrieval

181

Results from Previous Version

Bioinformatics

User Profiling & Information Retrieval

182

Results from Previous Version

User Profiling & Information Retrieval

They are very different articles!

Bioinformatics

183

[Wang et al., NIPS 2016a]

Results from Previous Version

Bioinformatics

Computer Vision

Programming Language

Incorrect Recommendations

User Profiling & Information Retrieval

The current version can avoid this using the

sequential information among words!

Contributions of
BDL-Based Recommender Systems

184

First end-to-end recommender system that combines
deep learning and graphical models

Robust probabilistic representation that deals with
sequential text and missing words

Improve performance over the state of the art

Bayesian Deep Learning

185

A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[Wang et al., KDD 2015]

[Wang et al., NIPS 2016a]

Bayesian Deep Learning

186

A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[Wang et al., AAAI 2017]
[Wang et al., AAAI 2015]

[Huang, Xue, Wang, Wang., ICML 2020]

187

Problem:

Network (graph)

Relations between nodes

Node

Node content

188

Problem:

Social Network

Friend relations

Node

Image, text, etc.

189

Problem:

Citation Network

‘Cited by’ relations

Node

Article text

Learn a per-node representation that
captures both content and graph

Node content Inter-node relation

BDL-Based Topic Models

190

Deep component Graphical component

Solution: Relational Probabilistic Autoencoder

[Wang et al. AAAI 2015]

(e.g., citation networks,
knowledge graphs)

•Enhance representation power with relational information

191

Solution: Relational Probabilistic Autoencoder

192

• How to make the representation of two nodes closer
to each other if they are connected in the graph

• How to handle multiple graphs

Challenges

Challenge 1: Representation of Connected Nodes

193

Probabilistic Autoencoder: Gaussian noise after each nonlinear transformation

[Wang et al. KDD 2015]

Probabilistic
autoencoder:

Standard
autoencoder:

194

⚫ 𝑨: Adjacency matrix that defines the graph
⚫ 𝐽: Number of nodes

Challenge 1
Step 1 of 3: Start from Adjacency Matrix

195

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items

196

Ideally: Connected items closer to each other

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items

197

Standard Gaussian

Generate 𝒔𝑗 one by one Generate 𝑺 = [𝒔1, 𝒔2, … , 𝒔𝐽] all at once

Matrix Gaussian distribution

𝒔1

𝒔2

𝒔3

𝒔4

𝒔5

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items

198

High probability densityLow probability density

Matrix Gaussian distribution

𝒔1

𝒔2

𝒔3

𝒔4

𝒔5

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items

199

Generate all 𝑱 vectors 𝐒 = [𝑠1, 𝑠2, … , 𝑠𝐽] from the matrix-variate Gaussian distribution:

Standard Gaussian

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items

200

Generate middle-layer representation 𝒙2 from Product of Gaussians (PoG):

First Gaussian related to 𝒙1

Second Gaussian related to 𝒔𝑗

𝒙2 has information on both the documents 𝒙0 and the graph 𝑨

Challenge 1
Step 3 of 3: Connect Latent Vectors to Representation

201

Overview: Relational Autoencoder

𝜆𝑤, 𝜆𝑛, 𝜆𝑙, 𝜆𝑟: hyperparamters to control the variance of Gaussian distributions

Two key ingredients:
⚫ Relational latent matrix 𝑺 to represent 𝑨
⚫ PoG to connect 𝑺, 𝑿𝟏, and 𝑿𝟐.

Relational Autoencoder: Two Components

Deep Component

Graphical Component

202

Challenge 2: Multiple Graphs (Networks)

Product of Q+1 Gaussians:

Multiple networks:
citation networks
co-author networks

203

Application: Predicting Tags for Articles

204

Relational

Autoencoder

𝒙2

Tag Predictor

biology

protein

cell

DNA

computer_systems

computer_science

machine_learning

neural_network

autoencoder

…

Sparse Setting, citeulike-a

205

Autoencoder (SDAE)
outperforms CTR-SR

Our method: RSDAE

Case Study 1: Tagging Scientific Articles

Precision: 10% VS 60%

206

Case Study 2: Tagging Movies (Baseline)

Precision: 30% VS 60%

207

Case Study 2: Tagging Movies (Ours)

Does not appear in any related movies

Very difficult to discover this tag

208

Correctly predict three more tags

Node content Inter-node relation

BDL-Based Relational Autoencoder

209

Deep component Graphical component

Summary:
Relational Autoencoder

[Wang et al. AAAI 2015]

Unified into a probabilistic relational model
for relational deep learning

210

[Wang et al. AAAI 2015]

1. First deep learning model in the relational
domain (graphs)

2. Naturally handle multiple graphs

3. Application to article tagging
demonstrating better performance

Contribution of Relational Probabilistic Autoencoder

References

• Bayesian probabilistic matrix factorization using Markov
chain Monte Carlo. Salakhutdinov, Ruslan, and Mnih, Andriy.
The 25th International Conference on Machine Learning
(ICML) 2008.

• Probabilistic Matrix Factorization. Salakhutdinov, Ruslan, and
Mnih, Andriy. Advances in Neural Information Processing
Systems (NIPS). 2008.

• Bayesian Learning via Stochastic Gradient Langevin
Dynamics. Welling, Max, and Yee W. Teh. The 28th
International Conference on Machine Learning (ICML). 2011.

• Bayesian Dark Knowledge. Korattikara, Anoop, Vivek Rathod,
Kevin Murphy, and Max Welling. Advances in Neural
Information Processing Systems (NIPS). 2015.

211

References

• A survey on Bayesian deep learning. Hao Wang, Dit-Yan Yeung. ACM Computing Surveys (CSUR),
2020.

• Towards Bayesian deep learning: a framework and some existing methods. Hao Wang, Dit-Yan
Yeung. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2016.

• Collaborative deep learning for recommender systems. Hao Wang, Naiyan Wang, Dit-Yan Yeung.
Twenty-First ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2015.

• Collaborative recurrent autoencoder: recommend while learning to fill in the blanks. Hao Wang,
Xingjian Shi, Dit-Yan Yeung. Thirtieth Annual Conference on Neural Information Processing Systems
(NIPS), 2016.

• Relational stacked denoising autoencoder for tag recommendation. Hao Wang, Xingjian Shi, Dit-
Yan Yeung. Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015.

• Relational deep learning: A deep latent variable model for link prediction.
Hao Wang, Xingjian Shi, Dit-Yan Yeung. Thirty-First AAAI Conference on Artificial Intelligence (AAAI),
2017.

• Natural parameter networks: a class of probabilistic neural networks. Hao Wang, Xingjian Shi, Dit-
Yan Yeung. Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), 2016.

• Bidirectional inference networks: A class of deep Bayesian networks for health profiling.
Hao Wang, Chengzhi Mao, Hao He, Mingmin Zhao, Tommi S. Jaakkola, Dina Katabi. Thirty-Third
AAAI Conference on Artificial Intelligence (AAAI), 2019.

• Continuously indexed domain adaptation. Hao Wang*, Hao He*, Dina Katabi. Thirty-Seventh
International Conference on Machine Learning (ICML), 2020.

• Assessment of medication self-administration using artificial intelligence. Mingmin Zhao*,
Kreshnik Hoti*, Hao Wang, Aniruddh, Raghu, Dina Katabi. Nature Medicine, 2021.

212

