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Perception

2

Inference

•See (visual object recognition)
•Read (text understanding)
•Hear (speech recognition)

Perception: perceive the environment

•Think (inference & reasoning)



Perception
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Inference

•See (visual object recognition)
•Read (text understanding)
•Hear (speech recognition)

Perception: perceive the environment

•Think (inference & reasoning)

Complex relations
Conditional dependencies & randomness



Perception
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Inference

High dimensional input:

Text, Images, Videos

Deep Learning Graphical Models
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[ Wang et al. 2014 ]
[ Wang et al. 2016 ]
[ Wang et al. 2020 ]
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Deep Learning

Graphical Models

Bayesian Deep Learning (BDL)

[ Wang et al. 2014 ]
[ Wang et al. 2016 ]
[ Wang et al. 2020 ]
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Bayesian Deep Learning (BDL)

Deep component Graphical component

Probabilistic DL models Graphical models

Bayesian deep learning (BDL)
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Bayesian Deep Learning (BDL)

•Maximum a posteriori (MAP)
•Markov chain Monte Carlo (MCMC)
•Variational inference (VI)

Deep component Graphical component

Probabilistic DL models Graphical models

Bayesian deep learning (BDL)



Medical images, e.g., MRI
Medical records
Various signals

Reasoning and inference

Deep component Graphical component

Bayesian deep learning (BDL)

Example: Medical Diagnosis
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[ Zhao*, Hoti*, Wang, Raghu, Katabi, Nature Medicine 2021 ] 

[ Wang et al., ICML 2020 ]



Uses video, plot, actors, etc.
Content understanding

Uses preferences, similarities
Recommendation

Deep component Graphical component

Bayesian deep learning (BDL)

Example: Movie Recommender Systems

10

[ Wang et al., KDD 2015 ]

[ Wang et al., NIPS 2016a ]



BDL: A Principled Probabilistic Framework

Deep Component Graphical Component
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Deep Variables

Graphical Variables

Hinge Variables

[ Wang et al. TKDE 2016 ]



BDL: A Principled Probabilistic Framework
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[ Wang et al. TKDE 2016 ]
[ Wang et al. CSUR 2020 ]

The whole model is jointly learned (end-to-end).

Deep Component Graphical Component



BDL Models for Different Applications

13

https://github.com/js05212/BayesianDeepLearning-Survey 
[ Wang et al. TKDE 2016 ]
[ Wang et al. CSUR 2020 ]



Bayesian Deep Learning
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A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets



Bayesian Deep Learning
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A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare



Bayesian Deep Learning
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A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets
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Probabilistic Graphical Models: 
A Mini-Tutorial



Probabilistic Graphical Models: Simple Example
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Observed variables (given)

Latent variables & parameters to infer/learn

𝑀 Number of repetitions (Number of data points)

𝒙 ∈ 𝑅𝐷

𝝁 ∈ 𝑅𝐷

𝚺 ∈ 𝑅𝐷×𝐷



Probabilistic Graphical Models: Simple Example
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

𝒙 ∈ 𝑅𝐷

𝝁 ∈ 𝑅𝐷

𝚺 ∈ 𝑅𝐷×𝐷



Probabilistic Graphical Models: Nodes and Edges
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Variables (either observed or latent) or parameters :

Conditional dependency:

𝝁, 𝚺, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴

𝑝 𝒙 𝝁, 𝚺 = 𝑁(𝒙|𝝁, 𝚺)



Probabilistic Graphical Models: Generative Process
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Draw 𝒙𝒎~𝑁(𝝁, 𝚺)



Learning and Inference
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Learning: Given observed data, learn the unknown parameters. 

𝒙 (𝑜𝑟 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴) 𝝁, 𝚺

Inference: Given observed data and parameters, infer the latent variables. 

Not applicable in this simple example since we do not have latent variables.



Learning and Inference
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Learning: Given observed data 𝒙, learn the unknown parameters 𝝁, 𝚺. 

𝝁 =
1

𝑀
෍

𝒎=1

𝑴

𝒙𝒎 , 𝚺 =
1

𝑀
෍

𝒎=1

𝑴

𝒙𝒎 − 𝝁 𝒙𝒎 − 𝝁 ⊤



Summary on Probabilistic Graphical Models

24

Gaussian Distribution Mixture of Gaussians



Probabilistic Graphical Models: 
A Slightly More Complicated Example
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𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)



Generative Process for the Gaussian Model (Recap)
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𝝁

𝒙

𝚺

𝑀

Gaussian Distribution: 𝒙~𝑁(𝝁, 𝚺)

Generative process (of M data points)

For each 𝑚 = 1,2, … , 𝑀:
Draw 𝒙𝒎~𝑁(𝝁, 𝚺)



Mixture of Gaussians: Generative Process
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𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)

Generative process (of M data points)

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

𝜋 = [0.25, 0.25, 0.25, 0.25], 𝜋 = [1.0, 0, 0, 0], 𝜋 = [0.8, 0.2, 0, 0]



Mixture of Gaussians: Generative Process
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𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

Real-value K-dim vector: 

𝝅 = [𝝅 1 ,…, 𝝅(𝑘), … , 𝝅 𝐾 ]

0 ≤ 𝝅 𝑘 ≤ 1, ෍

𝑘=1

𝐾

𝝅 𝑘 = 1

One-hot K-dim vector: 

𝒛𝒎 = [𝒛𝒎
1

,…, 𝒛𝒎
(𝑘)

, … , 𝒛𝒎
𝐾

]

𝒛𝒎
𝑘

∈ {0,1}, ෍

𝑘=1

𝐾

𝒛𝒎
𝑘

= 1

Parameters for K gaussians: 

𝝁𝒌, 𝜮𝒌 (𝑘 = 1,2, … , 𝐾)



Mixture of Gaussians: Factorization
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𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Generative process

For each 𝑚 = 1,2, … , 𝑀:
Choose 1 of the K Gaussians: Draw 𝒛𝒎~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝅)
Sample from the chosen Gaussian: 𝒙𝒎~𝑁(𝝁𝒌, 𝚺𝐤)

Joint distribution expressed as:
𝑝 𝒙𝒎, 𝒛𝒎 = 𝑝 𝒛𝒎 𝑝(𝒙𝒎|𝒛𝒎)

Choose 1 of the K Gaussians:

𝑝 𝒛𝒎 = ෑ

𝑘=1

𝐾

(𝝅
(𝒌)

)𝒛𝒎
(𝒌)

Sample from the chosen Gaussian (k-th):

𝑝 𝒙𝒎 𝒛𝒎
𝒌

= 1 = 𝑁 𝒙𝒎|𝝁𝒌, 𝚺𝒌

𝑝 𝒙𝒎 𝒛𝒎 = ෑ

𝑘=1

𝐾

𝑁 𝒙𝒎|𝝁𝒌, 𝜮𝒌
𝒛𝒎

(𝒌)



Mixture of Gaussians : Nodes and Edges
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𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Example: Mixture of 4 Gaussians (K=4)

Variables (either observed or latent) or parameters :

Conditional dependency:

𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴 𝒛𝟏, 𝒛𝟐, … , 𝒛𝑴 𝝁𝒌, 𝚺𝐤,

𝑝 𝒛𝒎|𝝅 𝑎𝑛𝑑 𝑝(𝒙𝒎|𝒛𝒎, 𝝅, {𝝁𝒌, 𝚺𝐤})



Mixture of Gaussians : 
Learning and Inference

31

𝝁

𝒙

𝚺

𝑀

Mixture of Gaussians

𝒛𝝅

𝐾

Learning: Given observed data, learn the unknown parameters. 

𝒙𝒎 (𝑜𝑟 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴) 𝝅, 𝝁𝒌, 𝚺𝐤

Inference: Given observed data and parameters, infer the latent variables. 

Real-value K-dim vector: 

𝝅 = [𝝅 1 ,…, 𝝅(𝑘), … , 𝝅 𝐾 ]

0 ≤ 𝝅 𝑘 ≤ 1, ෍

𝑘=1

𝐾

𝝅 𝑘 = 1

One-hot K-dim vector: 

𝒛𝒎 = [𝒛𝒎
1

,…, 𝒛𝒎
(𝑘)

, … , 𝒛𝒎
𝐾

]

𝒛𝒎
𝑘

∈ {0,1}, ෍

𝑘=1

𝐾

𝒛𝒎
𝑘

= 1

Parameters for K gaussians: 

𝝁𝒌, 𝜮𝒌 (𝑘 = 1,2, … , 𝐾)

𝒙𝒎 𝝅, 𝝁𝒌, 𝚺𝐤 𝒛𝒎
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎 given the current parameters.

Inference and Learning: E Step

𝛾 𝒛𝒎
𝒌

= 𝑝 𝒛𝒎
𝒌

= 1 𝒙𝒎, 𝝅, {𝝁𝒌, 𝚺𝒌}

∝ 𝑝 𝒛𝒎
𝒌

= 1 𝑝 𝒙𝒎 𝒛𝒎
𝒌

= 1 = 𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

E Step tries to infer the probability that 
this point 𝒙𝟏 belongs to each Gaussian.

𝛾 𝒛𝟏
𝟏

is large.

𝛾 𝒛𝟏
𝟐

, 𝛾 𝒛𝟏
𝟑

, 𝛾 𝒛𝟏
𝟒

are small.

෍
𝑘=1

𝐾

𝛾 𝒛𝒎
𝒌

= 1
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎 given the current parameters.

Inference and Learning: E Step

𝛾 𝒛𝒎
𝒌

= 𝑝 𝒛𝒎
𝒌

= 1 𝒙𝒎, 𝝅, {𝝁𝒌, 𝚺𝒌}

=
𝑝 𝒛𝒎

𝒌
= 1 𝑝 𝒙𝒎 𝒛𝒎

𝒌
= 1

σ𝑗=1
𝐾 𝑝 𝒛𝒎

𝒋
= 1 𝑝 𝒙𝒎 𝒛𝒎

𝒋
= 1

=
𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

σ𝑗=1
𝐾 𝝅 𝒋 𝑁(𝒙𝒎|𝝁𝒋, 𝚺𝒋)

Bayes’ Rule:

𝑝 𝑧 𝑥 =
𝑝(𝑥, 𝑧)

𝑝(𝑥)
=

𝑝 𝑧 𝑝(𝑥|𝑧)

σ𝑧 𝑝(𝑥, 𝑧)
=

𝑝 𝑧 𝑝(𝑥|𝑧)

σ𝑧 𝑝 𝑧 𝑝(𝑥|𝑧)
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Inference and Learning: M Step

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

𝝁𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

)𝒙𝒎

where 𝑀𝑘 = σ𝑚=1
𝑀 𝛾(𝒛𝒎

𝒌
)

Intuition for updating 𝝁𝒌: 

(a) Gather data points 𝒙𝒎 which are assigned 
to the same Gaussian, and compute their average

(b) Data points that belong to the Gaussian ‘more’ 

will have larger weight 𝛾 𝒛𝒎
𝒌
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Inference and Learning: M Step

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

𝝁𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

)𝒙𝒎

𝚺𝒌 =
1

𝑀𝑘
෍

𝑚=1

𝑀

𝛾(𝒛𝒎
𝒌

) 𝒙𝒎 − 𝝁𝒌 𝒙𝒎 − 𝝁𝒌
⊤

𝝅(𝒌) =
𝑀𝑘

𝑀

where 𝑀𝑘 = σ𝑚=1
𝑀 𝛾(𝒛𝒎

𝒌
)



37

Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

One last problem:
What convergence criterion to use?
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.

Likelihood for 𝒙𝒎: 𝑝 𝒙𝒎 = σ𝒛𝒎
𝑝 𝒛𝒎 𝑝(𝒙𝒎|𝒛𝒎) = σ𝑘=1

𝐾 𝝅 𝒌 𝑁(𝒙𝒎|𝝁𝒌, 𝚺𝐤)

Log-likelihood for M data points: L = σ𝑚=1
M log[σ𝑘=1

𝐾 𝝅 𝒌 𝑁 𝒙𝒎|𝝁𝒌, 𝚺𝐤 ]
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Learning: Given observed data 𝒙𝒎 , learn the parameters 𝝅, 𝝁𝒌, 𝚺𝐤

1. Initialize the means 𝝁𝒌, covariances 𝚺𝐤 and mixing coefficients 𝝅.

2. E Step. Infer the expectation (distribution) of 𝒛𝒎, denoted as 𝛾 𝒛𝒎
𝒌

,

given the current parameters 𝝅, 𝝁𝒌 and 𝚺𝐤.

Mixture of Gaussians: Learning and Inference
using Expectation-Maximization (EM)

3. M Step. Update the parameters 𝝅, 𝝁𝒌, 𝚺𝐤 given the current 𝛾 𝒛𝒎
𝒌

.

4. Iterate between E step and M step until convergence.
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Mixture of Gaussians: Visualization



Summary on Probabilistic Graphical Models

41

Gaussian Distribution Mixture of Gaussians



Summary on Learning and Inference Algorithms
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Maximum Likelihood Estimation (MLE) EM



Summary on Probabilistic Graphical Models
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Gaussian Distribution Mixture of Gaussians

Probabilistic Matrix Factorization (PMF)



The Rating Prediction Problem 
for Recommender Systems

44
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- unknown rating - rating between 1 to 5



The Rating Prediction Problem 
for Recommender Systems

45

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

m
o

v
ie

s



Probabilistic Matrix Factorization: 
Generative Process

46

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Generative Process

2. For each item j: 
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i: 
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗): 

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

Notation

𝜎𝑈, 𝜎𝑉 , 𝜎 are hyperparameters



Probabilistic Matrix Factorization: 
Generative Process - Factorization

47

Generative Process

2. For each item j: 
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i: 
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗): 

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

𝑝 𝑅, 𝑈, 𝑉 𝜎, 𝜎𝑈, 𝜎𝑉

= 𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

users

m
o

v
ie

s



Probabilistic Matrix Factorization: 
Learning and Inference
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Learning: Given observed data, learn the unknown global parameters. 

Inference: Given observed data and (hyper)parameters, infer the latent variables. 

𝑅𝑖𝑗 𝜎𝑈 , 𝜎𝑉, 𝜎 𝑈𝑖 , 𝑉𝑗

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Notation

Not applicable since 𝜎𝑈, 𝜎𝑉 , 𝜎 are fixed (hyperparameters)



Probabilistic Matrix Factorization: 
Maximum A Posteriori (MAP) Inference
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Posterior distribution of U and V: 

𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 =
𝑝(𝑈, 𝑉, 𝑅|𝜎2, 𝜎𝑉

2, 𝜎𝑈
2)

𝑝(𝑅|𝜎2, 𝜎𝑉
2, 𝜎𝑈

2)
=

𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

𝑝(𝑅|𝜎2, 𝜎𝑉
2, 𝜎𝑈

2)

Constant 𝐶
The log of the posterior distribution of U and V becomes: 

log 𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 = log 𝑝(𝑅|𝑈, 𝑉, 𝜎) + log 𝑝 𝑈 𝜎𝑈 + log 𝑝 𝑉 𝜎𝑉 + 𝐶

Latent user vector for user i: 𝑈𝑖 ∈ 𝑅𝐷

Latent item vector for item j: 𝑉𝑗 ∈ 𝑅𝐷

N users: 𝑈 ∈ 𝑅𝐷×𝑁, M items: 𝑉 ∈ 𝑅𝐷×𝑀

Rating that user i gives item j: 𝑅𝑖𝑗 ∈ 𝑅

Notation



Probabilistic Matrix Factorization: 
Generative Process (Recap)
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Generative Process

2. For each item j: 
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i: 
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗): 

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎)

𝑝 𝑅, 𝑈, 𝑉 𝜎, 𝜎𝑈, 𝜎𝑉

= 𝑝 𝑈 𝜎𝑈 𝑝 𝑉 𝜎𝑉 𝑝(𝑅|𝑈, 𝑉, 𝜎)

users

m
o

v
ie

s



Probabilistic Matrix Factorization: 
Maximum A Posteriori (MAP) Inference
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𝐼𝑖𝑗 , 𝜎, 𝜎𝑈, 𝜎𝑉 , 𝐶 are constants.

The log of the posterior distribution of U and V becomes: 

log 𝑝 𝑈, 𝑉 𝑅, 𝜎2, 𝜎𝑉
2, 𝜎𝑈

2 = log 𝑝(𝑅|𝑈, 𝑉, 𝜎) + log 𝑝 𝑈 𝜎𝑈 + log 𝑝 𝑉 𝜎𝑉 + 𝐶



Probabilistic Matrix Factorization: 
Maximum A Posteriori (MAP) Inference

52

Maximizing the log-posterior over item vectors 𝑉𝑗 and user vectors 𝑈𝑖 when 

fixing the hyperparameters (i.e. the observation noise variance 𝜎 and prior 

variances 𝜎𝑈, 𝜎𝑉) is equivalent to minimizing the sum-of-squared-errors

objective function with quadratic regularization terms:

where 𝜆𝑈 = 𝜎2/𝜎𝑈, 𝜆𝑉 = 𝜎2/𝜎𝑉, and || ⋅ ||𝐹𝑟𝑜 denotes the Frobenius norm.



Probabilistic Matrix Factorization: 
Maximum A Posteriori (MAP) Inference
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Initialize 𝑈𝑖 and 𝑉𝑗

For each iteration t = 1:T do

For each user i = 1:N do

𝑈𝑖 = 𝑈𝑖 − 𝜌𝑡
𝜕𝐸

𝜕𝑈𝑖

For each item j = 1:M do

𝑉𝑗 = 𝑉𝑗 − 𝜌𝑡
𝜕𝐸

𝜕𝑉𝑗

How to find the 𝑈𝑖 and 𝑉𝑗 that minimize 𝐸? Use gradient descent! 



Probabilistic Matrix Factorization: 
Learning or Inference?

54

(Global) parameters 𝜎𝑉, 𝜎𝑈 , and 𝜎 are fixed (we treat them 
as hyperparameters that are manually set). 

We are trying to estimate (local) latent variables 𝑉𝑗 and 𝑈𝑖.

Answer: Inference.



Probabilistic Matrix Factorization (PMF): 
Experimental Results

55

Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance 

and harder to overfit

Logistic PMF: Even better 

performance

(RMSE: Difference between predicted and ground-truth ratings.)



Logistic PMF: 
Maximum A Posteriori (MAP) Inference

56

Use a logistic function on the inner product

𝑈𝑖
𝑇𝑉𝑗 → 𝑔(𝑈𝑖

𝑇𝑉𝑗),

where the logistic (sigmoid) function 𝑔 𝑥 = 1/(1 + exp −𝑥 )



Probabilistic Matrix Factorization (PMF): 
Experimental Results

57

Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance 

and harder to overfit

Logistic PMF: Even better 

performance

Bayes PMF: Best performance



Probabilistic Matrix Factorization (PMF)

58

(Global) parameters 𝜎𝑉, 𝜎𝑈 , and 𝜎 are fixed (we treat them 
as hyperparameters that are manually set). 

Can we make the parameters learnable?



Bayesian Probabilistic Matrix Factorization (BPMF)

59

PMF Bayesian PMF

𝑁 𝜇𝑉 , Λ𝑉
−1 : Λ𝑉 is the precision matrix, Λ𝑉

−1 is the covariance matrix



Probabilistic Matrix Factorization: 
Generative Process (Recap)

60

Generative Process

2. For each item j: 
Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|0, 𝜎𝑉𝐼)

1. For each user i: 
Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|0, 𝜎𝑈𝐼)

3. For each user-item pair (𝑖, 𝑗): 

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝜎𝐼)



Bayesian Probabilistic Matrix Factorization (BPMF):
Generative Process
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Generative Process

1. Generate user precision matrix ΛU~𝑊(Λ𝑈|𝑊0, 𝜈0)
2. Generate user mean 𝜇𝑈~𝑁(𝜇𝑈|𝜇0, 𝛽0Λ𝑈

−1)
3. For each user i: 

Generate user vector 𝑈𝑖~𝑁(𝑈𝑖|𝜇𝑈 , Λ𝑈
−1)

7. For each user-item pair (𝑖, 𝑗): 

Generate rating 𝑅𝑖𝑗~𝑁(𝑅𝑖𝑗|𝑈𝑖
𝑇𝑉𝑗 , 𝛼−1)

4. Generate item precision matrix ΛV~𝑊(Λ𝑉|𝑊0, 𝜈0)
5. Generate item mean 𝜇𝑉~𝑁(𝜇𝑉|𝜇0, 𝛽0Λ𝑉

−1)
6. For each item j: 

Generate item vector 𝑉𝑗~𝑁(𝑉𝑗|𝜇𝑉 , Λ𝑉
−1)

Bayesian PMF

In a Gaussian distribution, 𝑁(𝜇, Σ), 
Σ is the covariance matrix 
and Σ−1 is the precision matrix

Wishart distribution



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference
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Bayesian PMF
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 , 
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}

(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}

Learning: Given the data 𝑅𝑖𝑗, 

estimate the optimal parameters 
Λ𝑈 , 𝜇𝑈 , Λ𝑉 , 𝜇𝑉

Inference: Given the data 𝑅𝑖𝑗 and the 

learned parameters Λ𝑈, 𝜇𝑈, Λ𝑉 , 𝜇𝑉, 
infer the latent variables for each user 
and item 𝑈𝑖 , 𝑉𝑗

How to perform learning and inference?



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling

63

Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 , 
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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Updating user i’ variable 𝑼𝒊

where

𝐼𝑖𝑗 = 1 if user i rated movie j

𝐼𝑖𝑗 = 0 if user i did not rate movie j

User i rated more movies

→ More 𝐼𝑖𝑗 = 1

→ This term gets larger

→ The precision matrix Λ𝑖
∗ gets 

larger

→ The covariance matrix Λ𝑖
∗ −1gets 

smaller

→ The model is more confident 

about the distribution.



Sampling User i’s Latent Variable 𝑼𝒊

65

The two dimensions with the highest variance are shown for two users



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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where

Weighted average of all the item 

latent variables 𝑉𝑗

The weight for item j’s variable 𝑉𝑗 is 

the rating user i gives item j, 𝑅𝑖𝑗

An item j is ignored if user i did not 

rate it (𝐼𝑖𝑗 = 0)

Updating user i’ variable 𝑼𝒊



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 , 
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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where

Weighted average of 𝜇0 and ഥ𝑈 (𝜇0

is a hyperparameter)

ഥ𝑈 is the average of all the user 

latent variables 𝑈𝑖

The weight for 𝜇0 is 𝛽0 (𝜇0 is a 

hyperparameter)

The weight for ഥ𝑈 is N (N is the 

number of users)

Updating (global) parameters 𝚯𝐔 = {𝝁𝑼, 𝚲𝐔}



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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where

𝛽0 is a hyperparameter (which is 

fixed)

N is the number of users

If we have more users, 𝛽0
∗ will get 

larger, 

the covariance 𝛽0
∗Λ𝑈

−1 will get 

smaller

The model is more confident about 

the distribution on 𝜇𝑈.

Updating (global) parameters 𝚯𝐔 = {𝝁𝑼, 𝚲𝐔}



Bayesian Probabilistic Matrix Factorization (BPMF):
Learning and Inference Using Gibbs Sampling
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Bayesian PMF

Hyperparameters: Θ0 = {𝜈0, 𝑊0, 𝜇0}
(Global) parameters: Θ𝑈 = Λ𝑈 , 𝜇𝑈 , 
Θ𝑉 = {Λ𝑉 , 𝜇𝑉}
(Local) latent variables: 𝑈𝑖 , 𝑉𝑗

We can update the latent variables and 

parameters similarly on the item side.



After Learning, How to Make Predictions
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These K samples 𝑈𝑖
𝑘

, 𝑉𝑗
(𝑘)

are generated by running K 
additional iterations after the 
Gibbs sampling algorithm 
converges

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316



PMF versus Bayesian PMF
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PMF Bayesian PMF

Use MAP inference to get 

point estimate of 𝑈𝑖 and 𝑉𝑗

given the data 𝑅𝑖𝑗

Use Bayesian inference to 

get the whole posterior 

distribution of 𝑈𝑖 and 𝑉𝑗 given 

the data 𝑅𝑖𝑗

Variances 𝜎𝑈, 𝜎𝑉 are fixed as 

hyperparameters
Covariances Λ𝑈

−1, Λ𝑉
−1 are 

learnable

Harder to overfit and better 

performance
Easier to overfit



Bayesian Probabilistic Matrix Factorization (BPMF): 
Experimental Results
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Dataset: Netflix.

Size: 100M ratings, 480K users, 17K movies.

SVD: Very easy to overfit

PMF: Better performance 

and harder to overfit

Logistic PMF: Even better 

performance

Bayes PMF: Best performance



Summary on Probabilistic Graphical Models
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Gaussian Distribution Mixture of Gaussians

PMF Bayesian PMF



Summary on Learning and Inference Algorithms
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Maximum Likelihood Estimation (MLE) EM

MAP Gibbs Sampling



Bayesian Deep Learning
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A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets



Neural Networks
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𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝐿𝑖 = (𝑓𝜃 𝒙𝒊 − 𝑦)𝟐

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient descent (SGD):

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

𝐿 = Σi=1
𝑁 1

𝑁
(𝑓𝜃 𝒙𝒊 − 𝑦𝑖 )𝟐



Bayesian Neural Networks
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𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝒙 𝑦

𝜽𝜎

𝑁

Neural Network Bayesian Neural Network

Generative Process:
Generate 𝜃~p 𝜃 σ
Generate y~p(y|𝜃, x)



Bayesian Neural Networks
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Learning: Given data points 
𝒙𝒊, 𝑦𝑖 and hyperparameter 
𝜎, estimate the distribution
of neural network 
parameters 𝜃, i.e., 𝑝(𝜃|𝑥, 𝑦)

𝒙 𝜽 𝑓𝜃(𝒙) 𝑦
loss

𝒙 𝑦

𝜽𝜎

𝑁

Neural Network Bayesian Neural Network

How to learn the distribution of 𝜃?



Bayesian Neural Networks
with Stochastic Gradient Langevin Dynamics (SGLD)
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𝒙 𝑦

𝜽𝜎

𝑁

For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient Langevin dynamics (SGLD):

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

SGD:
𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡



Bayesian Neural Networks
with SGLD
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For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using SGLD:

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

Gaussian noise with the variance equal to learning rate



Bayesian Neural Networks
with SGLD
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For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using SGLD: 

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

L2 regularization term



Bayesian Neural Networks
with SGLD
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For each iteration 𝑡 = 1: 𝑇 do
Sample a minibatch of 𝑛 data points (𝑥, 𝑦)
Update parameters using stochastic gradient descent:

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜂𝑡~𝑁(0, 𝜖𝑡)

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡

Δ𝜃𝑡 = 𝜖𝑡

1

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃𝑡

After convergence, sampling from 𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡 is equivalent to 
sampling from true posterior distribution of NN parameters 𝑝(𝜃|𝑥, 𝑦)



Bayesian Neural Networks
with SGLD
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Δ𝜃𝑡 = −
𝜖𝑡

2

𝜕 log 𝑝(𝜃|𝜎)

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕 log 𝑝(𝑦|𝑥𝑡𝑖 , 𝜃)

𝜕𝜃
+ 𝜂𝑡

After convergence, sampling from 𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡 is equivalent to 
sampling from true posterior distribution of NN parameters 𝑝(𝜃|𝑥, 𝑦)

Δ𝜃𝑡 =
𝜖𝑡

2

𝜕 𝜃
2

2

𝜕𝜃
+

𝑁

𝑛
෍

𝑖=1

𝑛 𝜕𝐿𝑡𝑖

𝜕𝜃
+ 𝜂𝑡

𝜇 = 0, 𝜎 = 1 → log 𝑓(𝑥) = −
1

2
𝑥2 + 𝐶

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011

log 𝑝(𝜃|𝑥, 𝑦, 𝜎) = log 𝑝(𝜃|𝜎) + log 𝑝(𝑦|𝑥, 𝜃, 𝜎) + 𝐶



Bayesian Neural Networks with SGLD:
Experimental Results
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Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011

UCI adult dataset; 
32561 observations and 123 features; 
classification task.



Bayesian Neural Networks with SGLD:
Experimental Results
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Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011
Bayesian Dark Knowledge, Korattikara et al., NIPS 2015

MNIST dataset; 
60K observations and 784 features; 
classification task.

SGD Dropout SGLD

1.83 1.51 1.27

Table: Test set misclassification rate on MNIST for 
different methods using a 784-400-400-10 MLP.



Bayesian Neural Networks with SGLD:
Price to Pay
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1. Storage and Memory
Store multiple copies of neural network parameters

2. Computation Time
Multiple passes of feedforward inferences 𝑓(𝑥|𝜃𝑡)



After Learning Bayesian PMF, 
How to Make Predictions (Recap)

88

These K samples 𝑈𝑖
𝑘

, 𝑉𝑗
(𝑘)

are generated by running K 
additional iterations after the 
Gibbs sampling algorithm 
converges



Bayesian Neural Networks with SGLD:
Price to Pay

89

Bayesian Learning via Stochastic Gradient Langevin Dynamics, Welling and Teh, ICML 2011
Bayesian Dark Knowledge, Korattikara et al., NIPS 2015

1. Store multiple copies of neural network parameters

2. Multiple passes of feedforward inferences 𝑓(𝑥|𝜃𝑡)

𝐸[𝑓 𝑥 𝜃𝑡) ≈
1

𝑇
෍

𝑡=1

𝑇

𝑓(𝑥|𝜃𝑡)

Need T times the storage/memory cost and 

computation cost



Bayesian Deep Learning
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A Unified Framework

Probabilistic Graphical Models

Probabilistic/Bayesian Neural Nets



BDL: A Principled Probabilistic Framework (Recap)

Deep Component Graphical Component

91

Deep Variables

Graphical Variables

Hinge Variables

[ Wang et al. TKDE 2016 ]



Bayesian Deep Learning
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A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[ Wang et al., KDD 2015 ]

[ Wang et al., NIPS 2016a ]



Recommender Systems

Observed preferences: 
Matrix completion

Rating matrix:
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Recommender Systems

Observed preferences: 

To predict: 
Matrix completion

Rating matrix:
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Recommender Systems with Content

Content information:

Plots, directors, actors, etc.

95

Sparse rating matrix



Modeling the Content Information

Handcrafted features Automatically
learn features

Automatically
learn features and

adapt for ratings

96

Prior work Our work



Modeling the Content Information

1. Powerful features for content information

Deep learning

97



Deep Learning

Stacked denoising
autoencoders

Convolutional neural
networks

Recurrent neural
networks

Typically for independent data points
i.e., no correlation between users and items

98



Modeling the Content Information

1. Powerful features for content information

Deep learning

2. Feedback from rating information Non-independent

Collaborative deep learning (CDL)

99



Challenges
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1. Probabilistic deep learning models as a deep component 

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation



Challenge 1
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1. Probabilistic deep learning models as a deep component 

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation



Challenge 1
Step 1 of 2: Autoencoder (AE)

Content
(e.g., documents)

102

𝑿𝟐: Middle-Layer representation

Content
(e.g., documents)



Challenge 1 
Step 2 of 2: Probabilistic Autoencoder

103

Probabilistic Autoencoder: Gaussian noise after each nonlinear transformation

Probabilistic 
autoencoder:

(ours)

Standard 
autoencoder:

[ Wang et al. KDD 2015 ]



Challenge 1 
Step 2 of 2: Probabilistic Autoencoder

104

[ Wang et al. KDD 2015 ]

𝑿𝟐: Middle-Layer representation

Probabilistic Autoencoder



Challenge 1 
Step 2 of 2: Probabilistic Autoencoder

105

[ Wang et al. KDD 2015 ]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Probabilistic Autoencoder



Challenge 1 
Step 2 of 2: Probabilistic Autoencoder
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[ Wang et al. KDD 2015 ]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Latent variables & parameters to learn

Probabilistic Autoencoder



Challenge 1 
Step 2 of 2: Probabilistic Autoencoder

107

[ Wang et al. KDD 2015 ]

𝑿𝟐: Middle-Layer representation

Observed variables (given)

Latent variables & parameters to learn

𝐽 Number of documents

Probabilistic Autoencoder



Challenge 1
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1. Probabilistic deep learning models as a deep component 

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation



Challenge 2
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1. Probabilistic deep learning models as a deep component 

Deep

Component
Graphical

Component

Compatible with the graphical component

Powerful as non-probabilistic versions

2. Connect to the graphical component

Similarity, preferences

Recommendation



Challenge 2
Step 1 of 4: Start from Middle-Layer Representation

110

[ Wang et al. KDD 2015 ]

𝑿𝟐: Middle-Layer representation

Start from probabilistic Autoencoder
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[ Wang et al. KDD 2015 ]

Generate the latent vector for item j from 𝑿𝟐 :

Challenge 2
Step 2 of 4: Generate Item j’s Latent Vector 𝒗𝒋
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[ Wang et al. KDD 2015 ]

Generate the latent vector for user i:

Challenge 2
Step 3 of 4: Generate User i’s Latent Vector 𝒖𝒊
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[ Wang et al. KDD 2015 ]

Generate the rating user i gives item j:

Challenge 2

Step 4 of 4: Generate Ratings 𝑹𝒊𝒋 from 𝒖𝒊
𝑻𝒗𝒋
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[ Wang et al. KDD 2015 ]

Generate the rating user i gives item j:

Graphical Component

Challenge 2

Step 4 of 4: Generate Ratings 𝑹𝒊𝒋 from 𝒖𝒊
𝑻𝒗𝒋



Overview: Collaborative Deep Learning (CDL)

Graphical model:

115

𝜆𝑤, 𝜆𝑛, 𝜆𝑣, 𝜆𝑢: 
hyperparamters to control the variance of Gaussian distributions



BDL: A Principled Probabilistic Framework (Recap)

Deep Component Graphical Component

116

Deep Variables

Graphical Variables

Hinge Variables

[ Wang et al. TKDE 2016 ]



Graphical Model of CDL with Two Components

Collaborative deep learning

117



Graphical Model of CDL with Two Components

Collaborative deep learning

Trained end-to-end

•Boost each other’s performance
•More powerful representation
•Infer missing ratings from content
•Infer missing content from ratings

118

Boost
representation
learning

Boost
recommendation
accuracy



Collaborative Deep Learning

Neural network representation for degenerated CDL

119



Collaborative Deep Learning

Information flows from ratings to content

120



Collaborative Deep Learning

Information flows from content to ratings

121



Collaborative Deep Learning

Representation learning <-> recommendation 

122



Datasets

Content information

Titles and abstracts Titles and abstracts Movie plots

[ Wang et al. KDD 2011 ]
[ Wang et al. IJCAI 2013 ]
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Evaluation Metrics

Recall:

Mean Average Precision (mAP):

Higher recall and mAP indicate better recommendation performance

124
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Recall@M in citeulike-t
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Recall@M in citeulike-t

x-axis: number of recommended items M
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Recall@M in citeulike-t

x-axis: number of recommended items M

y-axis: 
recall@M

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑡𝑒𝑚𝑠
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Recall@M in citeulike-t

CTR & DeepMusic
best baselines

x-axis: number of recommended items M

y-axis: 
recall@M

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑡𝑒𝑚𝑠
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Recall@M in citeulike-t

Boost recall 
from 46% to 54%

Our method: CDL

8% absolute improvement
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Recall@M in citeulike-t (sparse ratings)

Boost recall 

from 21% to 35%

14% absolute improvement



Sparse ratings

131

Sparse rating matrix



Sparse ratings

Content information:

Plots, directors, actors, etc.

132

Sparse rating matrix



Mean Average Precision (mAP)

Exactly the same as Oord et al. 2013, we set the cutoff point at
500 for each user.

A relative performance boost of about 50%

133

[ Wang et al. KDD 2015 ]
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Recommender Systems and Revenue

35%

[ From McKinsey & Company ]

of the revenue comes from recommendations
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$177 Billion 35% $62 Billion

[ From McKinsey & Company ]

× =

Recommender Systems and Revenue

(Yearly Sales Revenue)
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1% $620 Million

[ From McKinsey & Company ]

Recommender Systems and Revenue



Example User

Moonstruck

True Romance

Romance
& Drama
Movies

Precision: 20% VS 30%

137

(baseline)

(ours)

movies watched

movies watched



Example User

Johnny English

American Beauty

Action &
Drama
Movies

Precision: 20% VS 50%

138

(baseline)

(ours)

movies watched

movies watched



Example User

Precision: 50% VS 90%

139

(baseline)

(ours)

movies watched

movies watched



Learning of CDL
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Probabilistic Matrix Factorization: 
Maximum A Posteriori (MAP) Inference (Recap)

141

Maximizing the log-posterior over item vectors 𝑉𝑗 and user vectors 𝑈𝑖 when 

fixing the hyperparameters (i.e. the observation noise variance 𝜎 and prior 

variances 𝜎𝑈, 𝜎𝑉) is equivalent to minimizing the sum-of-squared-errors

objective function with quadratic regularization terms:

where 𝜆𝑈 = 𝜎2/𝜎𝑈, 𝜆𝑉 = 𝜎2/𝜎𝑉, and || ⋅ ||𝐹𝑟𝑜 denotes the Frobenius norm.



Collaborative Deep Learning

142

Graphical Model

Generative Process



Learning

maximizing the posterior probability of U and V 
is equivalent to maximizing the joint log-likelihood
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Learning

Prior (regularization) for user latent vectors, weights, and biases

144



Learning

Generating item latent vectors from content representation
with Gaussian offset

145



Learning

‘Generating’ clean input from the output of probabilistic SDAE
with Gaussian offset

146



Learning

Generating the input of Layer l from the output of Layer l-1
with Gaussian offset

147



Learning

measures the error of predicted ratings

148



Learning

If       goes to infinity, the likelihood simplifies to

149



Update Rules
For U and V, use block coordinate descent:

For W and b, use a modified version of backpropagation:

150



Brief Introduction for
Extensions of CDL/CRAE

151



[ Ying et al., PAKDD 2016 ]

Collaborative Deep Ranking

152



Generative Process: Collaborative Deep Learning (Recap)

153



Generative Process: Collaborative Deep Ranking

154



Both item content and user attributes
User attributes: age, gender, occupation, country, 
city, geolacation, domain, etc [ Li et al., CIKM 2015 ]

Symmetric CDL

155



Other Extensions of CDL

⚫Word2vec, tf-idf

⚫Sampling-based, variational inference

⚫Tagging information, networks

156



Summary of Collaborative Deep Learning

⚫A new probabilistic formulation for deep 

learning models (Challenge 1)

⚫First hierarchical Bayesian models for deep

hybrid recommender systems (Challenge 2)

⚫Significant performance improvement over

the state of the art

157
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Beyond Bag-of-Words

High dimensional sparse vector

• Ignore word order

• No local context

Bag-of-Words:
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Want representation
Aware of sequential relation of words
Robust to missing words

Instead of Bag-of-Words
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Recurrent
autoencoder

Feedforward
autoencoder

this a great ideaisthis a great ideais

encoder RNN decoder RNN

Document as a Sequence



Challenges:
• RNN encoder may learn wrong 

transition between words

“Collaborative recurrent autoencoder: 
recommend while learning to fill in the 
blanks”          [ Wang et al., NIPS 2016a ]

161

Challenge 1: Encoder Learns Wrong Transition



Sentence: This is a great idea.

162

Challenge 1: Encoder Learns Wrong Transition



this a great idea this a great ideais

encoder RNN decoder RNN

wrong transitionDirect

Denoising:

Sentence: This is a great idea. -> This is a great idea.

163

Challenge 1: Encoder Learns Wrong Transition

RNN encoder learns wrong transition between ‘this’ and ‘a’



this a great idea this a great ideais

encoder RNN decoder RNN

wrong transition

this a great ideaisthis a great idea<wc>

encoder RNN decoder RNN

Direct

Denoising:

Wildcard

Denoising:

Sentence: This is a great idea. -> This is a great idea.

164

Wildcard Denoising: Avoiding Wrong Transition



“Collaborative recurrent autoencoder: 
recommend while learning to fill in the 
blanks”          [ Wang et al., NIPS 2016a ]

165

Challenges:
• RNN encoder may learn wrong 

transition between words
• Pool a variable-length sequence 

into a fixed-length vector

Challenge 2: Variable-Length Vector for Pooling
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length: 8

length: 6

length: 4

[ Wang et al., NIPS 2016a ]

Challenge 2: Variable-Length Vector for Pooling

Thank you very much Thank you very much

Thanks a lot Thanks a lot

Thank you Thank you
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length: 8

[ Wang et al., NIPS 2016a ]

Challenge 2: Variable-Length Vector for Pooling

Thank you very much Thank you very much

Straight-forward approach averages or sums the vectors

length: 6

Thanks a lot Thanks a lot

But different words should have different weights!

➔ Need to learn a variable-length weight vector
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0.08

0.18
0.22

0.16
0.21

0.10
0.04

0.01

X

=

8 vectors

length-8
weight vector

one single
vector

Use the area of the beta distribution to define the weights!

[ Wang et al., NIPS 2016a ]

Challenge 2:
Variable-Length Weight Vector with Beta Distributions

Thank you very much Thank you very much
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0.13

X

=

6 vectors

length-6
weight vector

one single
vector

0.27 0.28
0.20

0.10
0.02

[ Wang et al., NIPS 2016a ]

Thanks a lot Thanks a lot

Challenge 2:
Variable-Length Weight Vector with Beta Distributions

Use the area of the beta distribution to define the weights!
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Why Beta Distribution?

Beta distributions

Parameters

Beta distributions

Parameters

Because by learning two parameters a, b, 
we can generate different variable-length weight vectors!
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• First model for joint recommendation and sequence generation
• Wildcard denoising for robust representation (Challenge 1)
• Beta-Pooling for variable-length sequences (Challenge 2)

[ Wang et al., NIPS 2016a ]

Deep Component

Graphical Component

Overview: Current Model
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Quantitative Comparison: Recall

Previous Version
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Quantitative Comparison: Recall

Boost recall 
from 54% to 58%

Current Version
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Quantitative Comparison: mAP
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[ Wang et al., NIPS 2016a ]

Case Study: Comparing Previous and Current Version
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[ Wang et al., NIPS 2016a ]

Case Study: Comparing Previous and Current Version
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[ Wang et al., NIPS 2016a ]

Case Study: Comparing Previous and Current Version
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[ Wang et al., NIPS 2016a ]

Case Study: Comparing Previous and Current Version

Precision: 60%
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[ Wang et al., NIPS 2016a ]

Case Study: Comparing Previous and Current Version

Precision: 60% VS 20%
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[ Wang et al., NIPS 2016a ]

Results from Previous Version

Bioinformatics

Computer Vision

Programming Language

Incorrect Recommendations

User Profiling & Information Retrieval
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Results from Previous Version

Bioinformatics

User Profiling & Information Retrieval
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Results from Previous Version

User Profiling & Information Retrieval

They are very different articles!

Bioinformatics
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[ Wang et al., NIPS 2016a ]

Results from Previous Version

Bioinformatics

Computer Vision

Programming Language

Incorrect Recommendations

User Profiling & Information Retrieval

The current version can avoid this using the 

sequential information among words!



Contributions of 
BDL-Based Recommender Systems

184

First end-to-end recommender system that combines 
deep learning and graphical models

Robust probabilistic representation that deals with 
sequential text and missing words

Improve performance over the state of the art



Bayesian Deep Learning
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A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[ Wang et al., KDD 2015 ]

[ Wang et al., NIPS 2016a ]



Bayesian Deep Learning
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A Unified Framework

Recommender Systems

Social Network Analysis

Natural-Parameter Networks

Healthcare

[ Wang et al., AAAI 2017 ]
[ Wang et al., AAAI 2015 ]

[ Huang, Xue, Wang, Wang., ICML 2020 ]
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Problem:

Network (graph)

Relations between nodes

Node

Node content
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Problem:

Social Network

Friend relations

Node

Image, text, etc.
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Problem:

Citation Network

‘Cited by’ relations

Node

Article text

Learn a per-node representation that 
captures  both content and  graph



Node content Inter-node relation

BDL-Based Topic Models

190

Deep component Graphical component

Solution: Relational Probabilistic Autoencoder

[ Wang et al. AAAI 2015 ]

(e.g., citation networks, 
knowledge graphs)



•Enhance representation power with relational information

191

Solution: Relational Probabilistic Autoencoder
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• How to make the representation of two nodes closer
to each other if they are connected in the graph

• How to handle multiple graphs

Challenges



Challenge 1: Representation of Connected Nodes

193

Probabilistic Autoencoder: Gaussian noise after each nonlinear transformation

[ Wang et al. KDD 2015 ]

Probabilistic 
autoencoder:

Standard 
autoencoder:
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⚫ 𝑨: Adjacency matrix that defines the graph
⚫ 𝐽: Number of nodes

Challenge 1
Step 1 of 3: Start from Adjacency Matrix
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Challenge 1
Step 2 of 3: Generate Latent Vectors for J items
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Ideally: Connected items closer to each other

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items
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Standard Gaussian

Generate 𝒔𝑗 one by one Generate 𝑺 = [𝒔1, 𝒔2, … , 𝒔𝐽] all at once

Matrix Gaussian distribution

𝒔1

𝒔2

𝒔3

𝒔4

𝒔5

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items
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High probability densityLow probability density

Matrix Gaussian distribution

𝒔1

𝒔2

𝒔3

𝒔4

𝒔5

𝒔1

𝒔3

𝒔2

𝒔5

𝒔4

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items
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Generate all 𝑱 vectors 𝐒 = [𝑠1, 𝑠2, … , 𝑠𝐽] from the matrix-variate Gaussian distribution:

Standard Gaussian

Challenge 1
Step 2 of 3: Generate Latent Vectors for J items
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Generate middle-layer representation 𝒙2 from Product of Gaussians (PoG):

First Gaussian related to 𝒙1

Second Gaussian related to 𝒔𝑗

𝒙2 has information on both the documents 𝒙0 and the graph 𝑨

Challenge 1
Step 3 of 3: Connect Latent Vectors to Representation
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Overview: Relational Autoencoder

𝜆𝑤, 𝜆𝑛, 𝜆𝑙, 𝜆𝑟: hyperparamters to control the variance of Gaussian distributions

Two key ingredients:
⚫ Relational latent matrix 𝑺 to represent 𝑨
⚫ PoG to connect 𝑺, 𝑿𝟏, and 𝑿𝟐.



Relational Autoencoder: Two Components

Deep Component

Graphical Component
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Challenge 2: Multiple Graphs (Networks)

Product of Q+1 Gaussians:

Multiple networks:
citation networks
co-author networks
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Application: Predicting Tags for Articles

204

Relational

Autoencoder

𝒙2

Tag Predictor

biology

protein

cell

DNA

computer_systems

computer_science

machine_learning

neural_network

autoencoder

…



Sparse Setting, citeulike-a
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Autoencoder (SDAE)
outperforms CTR-SR

Our method: RSDAE



Case Study 1: Tagging Scientific Articles

Precision: 10% VS 60%
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Case Study 2: Tagging Movies (Baseline)

Precision: 30% VS 60%
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Case Study 2: Tagging Movies (Ours)

Does not appear in any related movies

Very difficult to discover this tag

208

Correctly predict three more tags



Node content Inter-node relation

BDL-Based Relational Autoencoder

209

Deep component Graphical component

Summary: 
Relational Autoencoder

[ Wang et al. AAAI 2015 ]

Unified into a probabilistic relational model 
for relational deep learning
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[ Wang et al. AAAI 2015 ]

1. First deep learning model in the relational 
domain (graphs)

2. Naturally handle multiple graphs

3. Application to article tagging 
demonstrating better performance

Contribution of Relational Probabilistic Autoencoder
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