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Bayesian Deep Learning for Integrated Intelligence:
Bridging the Gap between Perception and Inference

by Hao Wang
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Abstract

While perception tasks such as visual object recognition and text understanding play

an important role in human intelligence, the subsequent tasks that involve inference,

reasoning, and planning require an even higher level of intelligence. The past few

years have seen major advances in many perception tasks using deep learning models.

In terms of higher-level inference, however, probabilistic graphical models (PGM),

with their ability to describe properties of variables and various probabilistic relations

among variables, are still more powerful and flexible.

To achieve integrated intelligence that involves both perception and inference,

we have been exploring a research direction we call Bayesian deep learning (BDL).

BDL tightly integrates deep learning and Bayesian models (e.g., PGM) within a

principled probabilistic framework. The aim of this thesis is to advance the fields

of both deep learning and Bayesian learning by demonstrating BDL’s power and

flexibility in different real-world problems such as recommender systems and social

network analysis. Its main contributions are as follows.

First, we propose a general framework, BDL, to combine the power of deep

learning and PGM in a principled way to get the best of both worlds. Specifically,

PGM formulations of deep learning models are first designed and then incorporated

into the main PGM, after which joint learning is performed for the unified models.

Second, we devise several concrete models under the BDL framework: Collab-

orative Deep Learning (CDL) for recommender systems, Collaborative Recurrent

Autoencoders (CRAE) for joint sequence generation and recommendation, Relational

Stacked Denoising Autoencoders (RSDAE) for relational representation learning,

and Relational Deep Learning (RDL) for link prediction and social network analysis.



Third, we propose Natural-Parameter Networks (NPN) as a backpropagation-

compatible and sampling-free Bayesian treatment for deep neural networks. Such a

treatment can then be naturally incorporated into BDL models to facilitate efficient

Bayesian learning of parameters.

xxii



Chapter 1

Introduction

1.1 Motivation

Deep learning has achieved significant success in many perception tasks including

seeing (visual object recognition), reading (text understanding), and hearing (speech

recognition). These are undoubtedly fundamental tasks for a functioning comprehen-

sive artificial intelligence (AI) system. However, in order to build a real AI system,

simply being able to see, read, and hear is far from enough. It should, above all,

possess the ability to think.

Take medical diagnosis as an example. Besides seeing visible symptoms (or

medical images from CT) and hearing descriptions from patients, a doctor has to

look for relations among all the symptoms and infer the etiology. Only after that

can the doctor provide medical advice for the patients. In this example, although

the abilities of seeing and hearing allow the doctor to acquire information from

the patients, it is the thinking part that defines a doctor. Specifically, the ability

of thinking here could involve causal inference, logic deduction, and dealing with

uncertainty, which is apparently beyond the capability of conventional deep learning

methods. Fortunately, another type of models, probabilistic graphical models (PGM),

excels at causal inference and dealing with uncertainty. The problem is that PGM is

not as good as deep learning models at perception tasks. To address the problem, it

is, therefore, a natural choice to tightly integrate deep learning and PGM within a

principled probabilistic framework, which we call Bayesian deep learning (BDL) in

this thesis.
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With the tight and principled integration in Bayesian deep learning, perception

and inference tasks are regarded as a whole and can benefit from each other. In the

example above, being able to see the medical image helps with a doctor’s diagnosis

and inference. On the other hand, diagnosis and inference can in turn help with

understanding a medical image. Suppose a doctor is not sure what a dark spot in a

medical image is, if she is able to infer the etiology of the symptoms and disease, it

could help her better decide whether the dark spot is a tumor or not.

As another example, to achieve high accuracy in recommender systems [1, 80, 82,

98,127], we need to fully understand the content of the items (e.g., documents and

movies) [90], analyze the profile and preference of users [134,138,145], and evaluate any

similarities among users [8,20,58,111]. Deep learning is good at the first subtask while

PGM excels at the other two. Besides the fact that having a better understanding of

item content would help with the analysis of user profiles, the estimated similarity

among users could provide valuable information for understanding item content

in turn. In order to fully utilize this bidirectional effect to boost recommendation

accuracy, we might wish to unify deep learning and PGM in one single principled

probabilistic framework, as done in [127].

Besides recommender systems, the need for Bayesian deep learning may also

arise when we are dealing with the control of non-linear dynamical systems with

raw images as input. Consider controlling a complex dynamical system according

to the live video stream received from a camera. This problem can be transformed

into iteratively performing two tasks, the perception from raw images and control

based on dynamic models. The perception task can be taken care of using multiple

layers of simple nonlinear transformation (deep learning) while the control task

usually needs more sophisticated models like hidden Markov models and Kalman

filters [46, 84]. The feedback loop is then completed by the fact that actions chosen

by the control model can affect the received video stream in return. To enable

an effective iterative process between the perception task and the control task, we

need a two-way information exchange between them. The perception component

would be the basis on which the control component estimates its states and the

control component with a build-in dynamic model would be able to predict the future

trajectory (images). In such cases, Bayesian deep learning is a suitable choice [133].

Apart from the major advantage that BDL provides a principled way of unifying

deep learning and PGM, another benefit comes from the implicit regularization

built into BDL. By imposing a prior on hidden units, parameters defining a neural

network, or the model parameters specifying the causal inference, BDL can to some
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degree avoid overfitting, especially in the absence of sufficient data. Usually, a

BDL model consists of two components, a perception component that is a Bayesian

formulation of a certain type of neural networks (NN) and a task-specific component

that describes the relationship among different hidden or observed variables using

PGM. Regularization is crucial for both of them. NN usually has large numbers of

free parameters that need to be regularized properly. Regularization techniques like

weight decay and dropout [108] are shown to be effective in improving performance

of NN and they both have Bayesian interpretations [35]. In terms of the task-specific

component, expert knowledge or prior information, as a kind of regularization, can

be incorporated into the model through the prior we impose to guide the model

when data are scarce.

Yet another advantage of using BDL for complex tasks (tasks that need both

perception and inference) is that it provides a principled Bayesian approach to

handling parameter uncertainty. When BDL is applied to complex tasks, there are

three kinds of parameter uncertainty that need to be taken into account:

1. Uncertainty of the neural network parameters.

2. Uncertainty of the task-specific parameters.

3. Uncertainty of exchanging information between the perception component and

the task-specific component.

By representing the unknown parameters using distributions instead of point esti-

mates, BDL offers a promising framework to handle these three kinds of uncertainty

in a unified way. It is worth noting that the third uncertainty could only be handled

under a unified framework like BDL. If we train the perception component and the

task-specific component separately, it is equivalent to assuming no uncertainty when

exchanging information between the two components.

1.2 Challenges

Naturally, there are challenges when applying BDL to real-world tasks:

1. First, it is nontrivial to design an efficient Bayesian formulation for NN with

reasonable time complexity. This line of work is pioneered by [52,83,87], but it

has not been widely adopted due to its lack of scalability. Fortunately, some

recent advances (more details in Chapter 7) in this direction [5,17,42,48,67,125]
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seem to shed light on the practical adoption of Bayesian neural networks

(BNN)1.

2. The second challenge is to ensure efficient and effective information exchange

between the perception component and the task-specific component. Ideally

both the first-order and second-order information (e.g., the mean and the

variance) should be able to flow back and forth between the two components. A

natural way is to represent the perception component as a PGM and seamlessly

connect it to the task-specific PGM, as seen in [37,123,127] (more details in

Chapter 3∼6).

1.3 Contributions

In this thesis, we first propose a principled probabilistic framework, BDL, to

bridge the gap between perception tasks such as natural language understanding

and inference/reasoning tasks such as recommender systems and link prediction.

Following the general framework, we propose a series of concrete BDL models for

different applications ranging from recommender systems, social network analysis,

and topic modeling to representation learning with different learning algorithms.

Furthermore, the full Bayesian treatment of these models can be performed with the

help of our proposed natural-parameter networks. We briefly introduce these models

as follows:

• Collaborative Deep Learning (CDL): Collaborative filtering (CF) is a

successful approach commonly used by many recommender systems. Conven-

tional CF-based methods use the ratings given to items by users as the sole

source of information for learning to make recommendations. However, the

ratings are often very sparse in many applications, causing CF-based methods

to degrade significantly in their recommendation performance. To alleviate

this sparsity problem, researchers proposed hybrid methods to incorporate

auxiliary information into CF. Nevertheless, current hybrid methods may not

be effective especially when the auxiliary information is very sparse. To address

this problem, we generalize recent advances in deep learning from i.i.d. input to

non-i.i.d. (CF-based) input and propose a hierarchical Bayesian model called

1Here we refer to the Bayesian treatment of neural networks as Bayesian neural networks. The
other term, Bayesian deep learning, is retained to refer to complex Bayesian models with both
perception components and task-specific components.

4



Section 1.3 Hao Wang

collaborative deep learning (CDL), which jointly performs deep representation

learning for the content information and collaborative filtering for the ratings

(feedback) matrix. To the best of our knowledge, CDL is the first hierarchical

Bayesian model to bridge the gap between state-of-the-art deep learning models

and RS. Unlike previous deep learning models which use simple targets such

as classification [64] and reconstruction [114], we propose to use CF as a more

complex target in a probabilistic framework. Besides the algorithm for attain-

ing maximum a posteriori (MAP) estimates, we also derive a sampling-based

algorithm for the Bayesian treatment of CDL, which, interestingly, turns out

to be a Bayesian generalized version of back-propagation. Extensive experi-

ments on three real-world datasets from different domains show that CDL can

significantly advance the state of the art.

• Collaborative Recurrent Autoencoders (CRAE): Hybrid methods (such

as CDL) are commonly used in many recommender systems. However, most

of them use either handcrafted features or the bag-of-words representation

as a surrogate for the content information but they are neither effective nor

natural enough. To address this problem, we develop a collaborative recurrent

autoencoder (CRAE) which is a denoising recurrent autoencoder (DRAE) that

models the generation of content sequences in the collaborative filtering (CF)

setting. The model generalizes recent advances in recurrent deep learning from

i.i.d. input to non-i.i.d. (CF-based) input and provides a new denoising scheme

along with a novel learnable pooling scheme for the recurrent autoencoder.

To do this, we first develop a hierarchical Bayesian model for the DRAE and

then generalize it to the CF setting. The synergy between denoising and CF

enables CRAE to make accurate recommendations while learning to fill in the

blanks in sequences. To the best of our knowledge, CRAE is the first model that

bridges the gap between RNN and CF, especially with respect to hybrid methods

for recommender systems. Experiments on real-world datasets from different

domains (CiteULike and Netflix) show that CRAE is able to significantly

outperform the state of the art on both the recommendation task based on

ratings and the sequence generation task based on content information. It is

also worth noting that although CDL works well in the recommendation task,

it fails in the sequence generation task since it is not a sequence-based model.

• Relational Stacked Denoising Autoencoders (RSDAE): In CDL and

CRAE, the probabilistic deep learning component functions as a prior (regu-

larization) for the task-specific probabilistic graphical model (e.g., recommen-
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dation). This model architecture works surprisingly well especially when little

data is available for the target task (e.g., extremely sparse rating matrices in

recommender systems). Usually the probabilistic deep learning component

is responsible for transforming the content information into features that are

iteratively adapted for a specific task. A natural question would be, what if

the end goal is just to model the content information itself (like a probabilistic

topic model) in an unsupervised setting? Can we use a similar probabilistic

deep learning model as a topic model and impose priors on the model? In

RSDAE, we verify the feasibility of using similar probabilistic deep learning

models as extendable probabilistic topic models. Specifically, we investigate

imposing a probabilistic relational prior2 on the deep model and extending

the Bayesian Stacked Denoising Autoencoders (BSDAE) to RSDAE. To the

best of our knowledge, this is the first model to impose relational priors on

deep learning models from a probabilistic perspective. Besides, since it is a

hierarchical Bayesian model, RSDAE can be conveniently extended to handle

multi-relational data and simultaneously model multiple networks (e.g., citation

networks and co-author networks).

• Relational Deep Learning (RDL): Although RSDAE can jointly model

network data and text as a relational topic model, it is not straightforward how

to predict links in the network. This is because RSDAE uses the network data

(specifically, the Laplacian matrix) in the prior of the model. Consequently, the

generative process starts from the network data and ends in text generation.

It is hence difficult to compute the link probability given the text information

even with Bayes’ rule. Besides, the learning algorithm proposed for RSDAE is

still based on maximum a posteriori (MAP), failing to unleash the Bayesian

model’s full potential. To address these two problems, we devise a hierarchical

Bayesian model, RDL, to seamlessly integrate the node attributes and link

structures of network data (not in the prior part) and perform relational deep

learning. As a full Bayesian treatment, a generalized variational inference

algorithm is derived to handle the multiple nonlinear transformations, model

the uncertainty, and perform joint learning in RDL.

• Natural-Parameter Networks (NPN): Performing Bayesian treatments

for BDL models calls for efficient Bayesian learning of deep neural networks.

Although it is possible to use Laplace approximation for to learn BNN as

2The prevalence of relational (network) data and the importance of relational models is discussed
in the following chapters.
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done in RDL, such approximation involves computation of a large Hessian

matrix and tends to be inefficient. Besides efficiency, another shortcoming of

existing probabilistic neural networks is the lack of flexibility to customize

different distributions for the weights and the neurons according to the data,

as is often done in probabilistic graphical models. To address these problems,

we propose a class of probabilistic NN, dubbed natural-parameter networks

(NPN), as a novel and lightweight Bayesian treatment of NN. NPN allows the

usage of arbitrary exponential-family distributions to model the weights and

neurons. Different from traditional NN and BNN, NPN takes distributions as

input and goes through layers of transformation before producing distributions

to match the target output distributions. As a Bayesian treatment, efficient

backpropagation (BP) is performed to learn the natural parameters for the

distributions over both the weights and neurons. The output distributions of

each layer, as byproducts, may be used as second-order representations for

associated tasks such as link prediction.

CDL, CRAE, RSDAE, and RDL can be seen as concrete examples of the Bayesian

deep learning framework (details of the framework will be introduced in Chapter 3) we

proposed in [128]. In terms of applications, CDL focuses on recommender systems and

CRAE substantially extends CDL for joint sequence modeling and recommendation.

Besides recommender systems and supervised learning, we proposed RSDAE as a

relational topic model under the umbrella of BDL and can be used for unsupervised

representation learning. Different from RSDAE, which incorporates the network

information in the priors, RDL uses it as supervision and hence is capable of both

representation learning and link prediction. In terms of deep learning models, CRAE

uses a probabilistic recurrent network as the deep learning component while CDL,

RDL, and RSDAE use feedforward networks. Although theoretically all four models

can be learned using either MAP inference or a fully Bayesian treatment (e.g.,

variational inference), RDL is the easiest one to apply a fully Bayesian treatment to

(details are shown in Chapter 6). Besides these four concrete models, NPN provides

a more efficient Bayesian treatment for the perception (NN) component of these

models. Figure 1.1 shows the positions of the four models and NPN in terms of

(types of) deep learning models and inference methods.
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Recurrent Networks Feedforward Networks

Fully Bayesian

MAP

CDL
RSDAE
RDL

CRAE

RDL
NPN

NPN

Figure 1.1: Positions of the four models in terms of (types of) deep
learning models and inference methods. Note that RDL appears twice
in the figure since both MAP inference and a full Bayesian treatment
are provided here.

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 introduces background on

deep learning (including feedforward neurual networks such as convolutional neural

networks (CNN) and recurrent neural networks (RNN) such as long short-term

memory (LSTM) models) and PGM (including a simple example and basic concepts

such as inference and learning in PGM). Based on the background, Chapter 3 presents

our proposed BDL framework as a principled and probabilistic way of integrating deep

learning and PGM. The following three chapters then introduce BDL’s applications

on different areas with different learning algorithms. Chapter 4 shows specifics of

the formulation of CDL and CRAE, their learning algorithms, and corresponding

experimental results. Note that CRAE is a recurrent version of CDL that enables

sequence modeling/generation. Chapter 5 introduces the model of RSDAE with its

parameter learning and experimental results, followed by Chapter 6, which presents

details of RDL, its two different inference methods (MAP and generalized variational

inference), and the experimental results. Chapter 7 then details the formulation

of NPN and provides its various applications. Chapter 8 concludes the thesis and

proposes some future research directions.
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Chapter 2

Background

In this chapter, we introduce background on deep learning and PGM. In terms

of deep learning, we will briefly review basic feedforward neurual networks such as

convolutional neural networks (CNN) and recurrent neural networks (RNN) such as

long short-term memory (LSTM) models). For PGM, we will use latent Dirichlet

allocation (LDA) as a simple example and explain some basic concepts such as

inference and learning in PGM.

2.1 Deep Learning

Deep learning normally refers to neural networks with more than two layers. To

better understand deep learning, here we start with the simplest type of neural

networks, multilayer perceptrons (MLP), as an example to show how conventional

deep learning works. After that, we will review several other types of deep learning

models based on MLP.

2.1.1 Multilayer Perceptron

Essentially a multilayer perceptron is a sequence of parametric nonlinear transfor-

mations. Suppose we want to train a multilayer perceptron to perform a regression

task which maps a vector of M dimensions to a vector of D dimensions. We denote

the input as a matrix X0 (0 means it is the 0-th layer of the perceptron). The j-th

row of X0, denoted as X0,j∗, is an M -dimensional vector representing one data point.

The target (the output we want to fit) is denoted as Y. Similarly Yj∗ denotes a

9
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D-dimensional row vector. The problem of learning an L-layer multilayer perceptron

can be formulated as the following optimization problem:

min
{Wl},{bl}

‖XL −Y‖F + λ
∑
l

‖Wl‖2
F

subject to Xl = σ(Xl−1Wl + bl), l = 1, . . . , L− 1

XL = XL−1WL + bL,

where σ(·) is an element-wise sigmoid function for a matrix and σ(x) = 1
1+exp(−x)

.

The purpose of imposing σ(·) is to allow nonlinear transformation. Normally other

transformations like tanh(x) and max(0, x) can be used as alternatives of the sigmoid

function.

Here Xl (l = 1, 2, . . . , L − 1) is the hidden units. As we can see, XL can be

easily computed once X0, Wl, and bl are given. Since X0 is given by the data,

we only need to learn Wl and bl here. Usually this is done using backpropagation

and stochastic gradient descent (SGD). The key is to compute the gradients of the

objective function with respect to Wl and bl. If we denote the value of the objective

function as E, we can compute the gradients using the chain rule as:

∂E

∂XL

= 2(XL −Y) (2.1)

∂E

∂Xl

= (
∂E

∂Xl+1

◦Xl+1 ◦ (1−Xl+1))Wl+1 (2.2)

∂E

∂Wl

= XT
l−1(

∂E

∂Xl

◦Xl ◦ (1−Xl)) (2.3)

∂E

∂bl
= mean(

∂E

∂Xl

◦Xl ◦ (1−Xl), 1), (2.4)

where l = 1, . . . , L and the regularization terms are omitted. ◦ denotes the element-

wise product and mean(·, 1) is the matlab operation on matrices. In practice, we

only use a small part of the data (e.g., 128 data points) to compute the gradients for

each update. This is called stochastic gradient descent.

As we can see, in conventional deep learning models, only Wl and bl are free

parameters, which we will update in each iteration of the optimization. Xl is not a

free parameter since it can be computed exactly if Wl and bl are given.
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X0X0 X1X1 X2X2 X3X3 X4X4 XcXc

Figure 2.1: A 2-layer SDAE with L = 4.

2.1.2 Autoencoders

An autoencoder (AE) is a feedforward neural network to encode the input

into a more compact representation and reconstruct the input with the learned

representation. In its simplest form, an autoencoder is no more than a multilayer

perceptron with a bottleneck layer (a layer with a small number of hidden units) in

the middle. The idea of autoencoders has been around for decades [19,41,53,71] and

abundant variants of autoencoders have been proposed to enhance representation

learning including sparse AE [93], contrastive AE [99], and denoising AE [114].

For more details, please refer to a nice recent book on deep learning [41]. Here we

introduce a kind of multilayer denoising AE, known as stacked denoising autoencoders

(SDAE), both as an example of AE variants and as background for its applications

on BDL-based recommender systems in Chapter 4.

SDAE [114] is a feedforward neural network for learning representations (encoding)

of the input data by learning to predict the clean input itself in the output, as shown in

Figure 2.1. The hidden layer in the middle, i.e., X2 in the figure, can be constrained to

be a bottleneck to learn compact representations. The difference between traditional

AE and SDAE is that the input layer X0 is a corrupted version of the clean input

data. Essentially an SDAE solves the following optimization problem:

min
{Wl},{bl}

‖Xc −XL‖2
F + λ

∑
l

‖Wl‖2
F

subject to Xl = σ(Xl−1Wl + bl), l = 1, . . . , L− 1

XL = XL−1WL + bL,

where λ is a regularization parameter and ‖ · ‖F denotes the Frobenius norm. Here

SDAE can be regarded as a multilayer perceptron for regression tasks described in

the previous section. The input X0 of the MLP is the corrupted version of the data

11



Section 2.1 Hao Wang

Figure 2.2: A convolutional layer with 4 input feature maps and 2
output feature maps.

and the target Y is the clean version of the data Xc. For example, Xc can be the

raw data matrix, and we can randomly set 30% of the entries in Xc to 0 and get X0.

In a nutshell, SDAE learns a neural network that takes the noisy data as input and

recovers the clean data in the last layer. This is what ‘denoising’ in the name means.

Normally, the output of the middle layer, i.e., X2 in Figure 2.1, would be used to

compactly represent the data.

2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNN) can be viewed as another variant of MLP.

Different from AE, which is initially designed to perform dimensionality reduction,

CNN is biologically inspired. According to [61], two types of cells have been identified

in the cat’s visual cortex. One is simple cells that respond maximally to specific

patterns within their receptive field, and the other is complex cells with larger

receptive field that are considered locally invariant to positions of patterns. Inspired

by these findings, the two key concepts in CNN are then developed: convolution and

max-pooling.

Convolution: In CNN, a feature map is the result of the convolution of the

input and a linear filter, followed by some element-wise nonlinear transformation.

The input here can be the raw image or the feature map from the previous layer.

Specifically, with input X, weights Wk, bias bk, the k-th feature map Hk can be

obtained as follows:

Hk
ij = tanh((Wk ∗X)ij + bk).

12
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Figure 2.3: On the left is a conventional feedforward neural network
with one hidden layer, where x is the input, z is the hidden layer, and o
is the output, W and V are the corresponding weights (biases are
omitted here). On the right is a recurrent neural network with input
{xt}Tt=1, hidden states {ht}Tt=1, and output {ot}Tt=1.

Note that in the equation above we assume one single input feature map and multiple

output feature maps. In practice, CNN often has multiple input feature maps as well

due to its deep structure. A convolutional layer with 4 input feature maps and 2

output feature maps is shown in Figure 2.2.

Max-Pooling: Usually, a convolutional layer in CNN is followed by a max-

pooling layer, which can be seen as a type of nonlinear downsampling. The operation

of max-pooling is simple. For example, if we have a feature map of size 6× 9, the

result of max-pooling with a 3× 3 region would be a downsampled feature map of

size 2 × 3. Each entry of the downsampled feature map is the maximum value of

the corresponding 3 × 3 region in the 6 × 9 feature map. Max-pooling layers can

not only reduce computational cost by ignoring the non-maximal entries but also

provide local translation invariance.

Putting it all together: Usually to form a complete and working CNN, the

input would alternate between L convolutional layers and L max-pooling layers

before going into an MLP for tasks like classification or regression. One famous

example is the LeNet-5 [72], which alternates between 2 convolutional layers and 2

max-pooling layers before going into a fully connected MLP for target tasks.

2.1.4 Recurrent Neural Network

When we read an article, we would normally take in one word at a time and

try to understand the current word based on previous words. This is a recurrent

process that needs short-term memory. Unfortunately conventional feedforward

neural networks like the one shown in Figure 2.3(left) fail to do so. For example,
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imagine we want to constantly predict the next word as we read an article. Since the

feedforward network only computes the output o as Vq(Wx), where the function

q(·) denotes element-wise nonlinear transformation, it is unclear how the network

could naturally model the sequence of words to predict the next word.

Vanilla Recurrent Neural Network

To solve the problem, we need a recurrent neural network [41] instead of a

feedforward one. As shown in Figure 2.3(right), the computation of the current

hidden states ht depends on the current input xt (e.g., the t-th word) and the

previous hidden states ht−1. This is why there is a loop in the RNN. It is this loop

that enables short-term memory in RNNs. The ht in the RNN represents what the

network knows so far at the t-th time step. To see the computation more clearly, we

can unroll the loop and represent the RNN as in Figure 2.4. If we use hyperbolic

tangent nonlinearity (tanh), the computation of output ot will be as follows:

at = Wht−1 + Yxt + b

ht = tanh(at)

ot = Vht + c,

where Y, W, and V denote the weight matrices for input-to-hidden, hidden-to-hidden,

and hidden-to-output connections, respectively, and b and c are the corresponding

biases. If the task is to classify the input data at each time step, we can compute

the classification probability as pt = softmax(ot) where

softmax(q) =
exp(q)∑
i

exp(qi)
.

Similar to feedforward networks, to train an RNN, a generalized back-propagation

algorithm called back-propagation through time (BPTT) [41] can be used. Essentially

the gradients are computed through the unrolled network as shown in Figure 2.4

with shared weights and biases for all time steps.

Gated Recurrent Neural Network

The problem with the vanilla RNN introduced above is that the gradients

propagated over many time steps are prone to vanish or explode, which makes

14
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Figure 2.4: An unrolled RNN which is equivalent to the one in Figure
2.3(right). Here each node (e.g., x1, h1, or o1) is associated with one
particular time instance.

the optimization notoriously difficult. In addition, the signal passing through the

RNN decays exponentially, making it impossible to model long-term dependencies

in long sequences. Imagine we want to predict the last word in the paragraph ‘I

have many books ... I like reading ’. In order to get the answer, we need ‘long-term

memory’ to retrieve information (the word ‘books’) at the start of the text. To

address this problem, the long short-term memory model (LSTM) is designed as

a type of gated RNN to model and accumulate information over a relatively long

duration. The intuition behind LSTM is that when processing a sequence consisting

of several subsequences, it is sometimes useful for the neural network to summarize

or forget the old states before moving on to process the next subsequence [41]. Using

t = 1 . . . Tj to index the words in the sequence, the formulation of LSTM is as follows

(we drop the item index j for notational simplicity):

xt = Wwet

st = hft−1 � st−1 + hit−1 � σ(Yxt−1 + Wht−1 + b), (2.5)

where xt is the word embedding of the t-th word, Ww is a KW -by-S word embedding

matrix, and et is the 1-of-S representation, � stands for the element-wise product

operation between two vectors, σ(·) denotes the sigmoid function, st is the cell state

of the t-th word, and b, Y, and W denote the biases, input weights, and recurrent

weights respectively. The forget gate units hft and the input gate units hit in Equation

(2.5) can be computed using their corresponding weights and biases Yf , Wf , Yi,

Wi, bf , and bi:

hft = σ(Yfxt + Wfht + bf )

hit = σ(Yixt + Wiht + bi).
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A B C $ A B C $

Figure 2.5: The encoder-decoder architecture involving two LSTMs.
The encoder LSTM (in the left rectangle) encodes the sequence ‘ABC’
into a representation and the decoder LSTM (in the right rectangle)
recovers the sequence from the representation. ‘$’ marks the end of a
sentence.

The output depends on the output gate hot which has its own weights and biases Yo,

Wo, and bo:

ht = tanh(st)� hot−1

hot = σ(Yoxt + Woht + bo).

Note that in the LSTM, information of the processed sequence is contained in the

cell states st and the output states ht, both of which are column vectors of length

KW .

Similar to [29,110], we can use the output state and cell state at the last time step

(hTj and sTj ) of the first LSTM as the initial output state and cell state of the second

LSTM. This way the two LSTMs can be concatenated to form an encoder-decoder

architecture, as shown in Figure 2.5.

Note that there is a vast literature on deep learning and neural networks. The

introduction in this section intends to serve only as the background of Bayesian deep

learning. Readers are referred to [41] for a comprehensive survey and more details.

2.2 Probabilistic Graphical Models

Probabilistic Graphical Models (PGM) use diagrammatic representations to

describe random variables and relationships among them. Similar to a graph that

contains nodes (vertices) and links (edges), PGM has nodes to represent random

variables and links to express probabilistic relationships among them.
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Figure 2.6: The probabilistic graphical model for LDA, J is the number
of documents and D is the number of words in a document.

2.2.1 Models

There are essentially two types of PGM, directed PGM (also known as Bayesian

networks) and undirected PGM (also known as Markov random fields). In this survey

we mainly focus on directed PGM1. For details on undirected PGM, readers are

referred to [12].

A classic example of PGM would be latent Dirichlet allocation (LDA), which is

used as a topic model to analyze the generation of words and topics in documents.

Usually PGM comes with a graphical representation of the model and a generative

process to depict the story of how the random variables are generated step by step.

Figure 2.6 shows the graphical model for LDA and the corresponding generative

process is as follows:

• For each document j (j = 1, 2, . . . , J),

1. Draw topic proportions θj ∼ Dirichlet(α).

2. For each word wjn of item (paper) wj,

(a) Draw topic assignment zjn ∼ Mult(θj).

(b) Draw word wjn ∼ Mult(βzjn).

The generative process above gives the story of how the random variables are

generated. In the graphical model in Figure 2.6, the shaded node denotes observed

variables while the others are latent variables (θ and z) or parameters (α and β).

As we can see, once the model is defined, learning algorithms can be applied to

automatically learn the latent variables and parameters.

Due to its Bayesian nature, PGM like LDA is easy to extend to incorporate

other information or to perform other tasks. For example, after LDA, different

variants of topic models based on it have been proposed. [14,118] are proposed to

incorporate temporal information and [13] extends LDA by assuming correlations

1For convenience, PGM stands for directed PGM in this survey unless specified otherwise.
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among topics. [56] extends LDA from the batch mode to the online setting, making

it possible to process large datasets. On recommender systems, [117] extends LDA

to incorporate rating information and make recommendations. This model is then

further extended to incorporate social information [94,120,122].

2.2.2 Inference and Learning

Strictly speaking, the process of finding the parameters (e.g., α and β in Figure

2.6) is called learning and the process of finding the latent variables (e.g., θ and

z in Figure 2.6) given the parameters is called inference. However, given only the

observed variables (e.g. w in Figure 2.6), learning and inference are often intertwined.

Usually the learning and inference of LDA would alternate between the updates of

latent variables (which correspond to inference) and the updates of the parameters

(which correspond to learning). Once the learning and inference of LDA is completed,

we would have the parameters α and β. If a new document comes, we can now fix

the learned α and β and then perform inference alone to find the topic proportions

θj of the new document.2

Like in LDA, various learning and inference algorithms are available for each

PGM. Among them, the most cost-effective one is probably maximum a posteriori

(MAP), which amounts to maximizing the posterior probability of the latent variable.

Using MAP, the learning process is equivalent to minimizing (or maximizing) an

objective function with regularization. One famous example is the probabilistic

matrix factorization (PMF) [103]. The learning of the graphical model in PMF is

equivalent to factorization of a large matrix into two low-rank matrices with L2

regularization.

MAP, as efficient as it is, gives us only point estimates of latent variables (and

parameters). In order to take the uncertainty into account and harness the full power

of Bayesian models, one would have to resort to Bayesian treatments like variational

inference and Markov chain Monte Carlo (MCMC). For example, the original LDA

uses variational inference to approximate the true posterior with factorized variational

distributions [15]. Learning of the latent variables and parameters then boils down

to minimizing the KL-divergence between the variational distributions and the true

posterior distributions. Besides variational inference, another choice for a Bayesian

2For convenience, we use ‘learning’ to represent both ‘learning and inference’ in the following
text.
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treatment is to use MCMC. For example, MCMC algorithms like [92] have been

proposed to learn the posterior distributions of LDA.
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Chapter 3

Bayesian Deep Learning

With the background on deep learning and PGM, we are now ready to introduce

the general framework and some concrete examples of BDL. Specifically, in this

chapter we will present our proposed BDL framework as a principled and probabilistic

way of integrating deep learning and PGM. Concrete examples of BDL will be

discussed in details in Chapter 4, Chapter 5, and Chapter 6.

3.1 PGM for BDL

As mentioned in Chapter 1, BDL is a principled probabilistic framework with

two seamlessly integrated components: a perception component and a task-specific

component. Figure 3.1 shows the PGM of a simple BDL model as an example.

The part inside the red rectangle on the left represents the perception component

and the part inside the blue rectangle on the right is the task-specific component.

Typically, the perception component would be a probabilistic formulation of a deep

learning model with multiple nonlinear processing layers represented as a chain

structure in the PGM. While the nodes and edges in the perception component are

relatively simple, those in the task-specific component often describe more complex

distributions and relationships among variables (like in LDA).

3.2 Three Sets of Variables

There are three sets of variables in a BDL model: perception variables, hinge

variables, and task variables. In this thesis, we use Ωp to denote the set of perception
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Table 3.1: Summary of example BDL Models. Ωh is the set of hinge
variables. V and U are the item latent matrix and the user latent
matrix (Chapter 4). S is the relational latent matrix (Chapter 5), and X is
the content matrix (Chapter 4).

Applications Models Ωh Var. of Ωh MAP VI Gibbs Sampling SG Thermostats

Recommender
Systems

CDL [127] {V} HV X
Bayesian CDL [127] {V} HV X
Marginalized CDL [75] {V} LV X
Symmetric CDL [75] {V,U} LV X
CDR [139] {V} HV X
CKE [142] {V} HV X
CRAE [124] {V} HV X

Topic
Models

Relational SDAE [123] {S} HV X
DPFA-SBN [37] {X} ZV X X
DPFA-RBM [37] {X} ZV X X

Link Prediction RDL [126] {φ} HV X X
Control E2C [133] {zt, zt+1} LV X

variables (e.g., A, B, and C in Figure 3.1), which are the variables in the perception

component. Usually Ωp would include the weights and neurons in the probabilistic

formulation of a deep learning model. Ωh is used to denote the set of hinge variables

(e.g. J in Figure 3.1). These variables directly interact with the perception component

from the task-specific component. Table 3.1 shows the set of hinge variables Ωh for

each listed example BDL models. The set of task variables (e.g. G, I, and H in

Figure 3.1), i.e., variables in the task-specific component without direct relation to

the perception component, is denoted as Ωt.

3.3 The Independent Requirement

Note that hinge variables are always in the task-specific component. Normally,

the connections between hinge variables Ωh and the perception component (e.g.,

C→ J and F→ J in Figure 3.1) should be independent for convenience of parallel

computation in the perception component. For example, each row in J is related

to only one corresponding row in C and one in F. Although it is not mandatory in

BDL models, meeting this requirement would significantly increase the efficiency of

parallel computation in model training.

AA BB CC

DD EE FF

JJ GG

II HH

Figure 3.1: The PGM for an example BDL. The red rectangle on the
left indicates the perception component, and the blue rectangle on the
right indicates the task-specific component. The hinge variable (defined
in Section 3.2) Ωh = {J}.
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Joint Distribution Decomposition: If the edges between the two components

point towards Ωh, the joint distribution of all variables can be written as:

p(Ωp,Ωh,Ωt) = p(Ωp)p(Ωh|Ωp)p(Ωt|Ωh). (3.1)

If the edges between the two components originate from Ωh, the joint distribution

of all variables can be written as:

p(Ωp,Ωh,Ωt) = p(Ωt)p(Ωh|Ωt)p(Ωp|Ωh). (3.2)

Apparently, it is possible for BDL to have some edges between the two components

pointing towards Ωh and some originating from Ωh, in which case the decomposition

of the joint distribution would be more complex.

3.4 Variance Related to Ωh

As mentioned in Chapter 1, one of the motivations for BDL is to model the

uncertainty of exchanging information between the perception component and the

task-specific component, which boils down to modeling the uncertainty related to Ωh.

For example, this kind of uncertainty is reflected in the variance of the conditional

density p(Ωh|Ωp) in Equation (3.1)1. According to the degree of flexibility, there are

three types of variance for Ωh (for simplicity we assume the joint likelihood of BDL

is Equation (3.1), Ωp = {p}, Ωh = {h}, and p(Ωh|Ωp) = N (h|p, s) in our example

below):

• Zero-Variance: Zero-Variance (ZV) assumes no uncertainty during the infor-

mation exchange between the two components. In the example, zero-variance

means directly setting s to 0.

• Hyper-Variance: Hyper-Variance (HV) assumes that uncertainty during the

information exchange is defined through hyperparameters. In the example, HV

means that s is a hyperparameter that is manually tuned.

• Learnable Variance: Learnable Variance (LV) uses learnable parameters to

represent uncertainty during the information exchange. In the example, s is

the learnable parameter.

1For models with the joint likelihood decomposed as in Equation (3.2), the uncertainty is
reflected in the variance of p(Ωp|Ωh).
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As shown above, we can see that in terms of model flexibility, LV > HV > ZV.

Normally, if the models are properly regularized, an LV model would outperform

an HV model, which is superior to a ZV model. In Table 3.1, we show the types of

variance for Ωh in different BDL models. Note that although each model in the table

has a specific type, one can always adjust the models to devise their counterparts of

other types. For example, while CDL in the table is an HV model, we can easily

adjust p(Ωh|Ωp) in CDL to devise its ZV and LV counterparts. In [127], they compare

the performance of an HV CDL and a ZV CDL and finds that the former performs

significantly better, meaning that sophisticatedly modeling uncertainty between two

components is essential for performance.

3.5 Learning Algorithms

Due to the nature of BDL, practical learning algorithms need to meet these

criteria:

1. They should be online algorithms in order to scale well for large datasets.

2. They should be efficient enough to scale linearly with the number of free

parameters in the perception component.

Criterion 1 implies that conventional variational inference or MCMC methods are

not applicable. Usually an online version of them is needed [57]. Most SGD-based

methods do not work either unless only MAP inference (as opposed to Bayesian

treatments) is performed. Criterion 2 is needed because there are typically a large

number of free parameters in the perception component. This means methods based

on Laplace approximation [83] are not realistic since they involve the computation

of a Hessian matrix that scales quadratically with the number of free parameters.
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Chapter 4

Collaborative Deep Learning

In this chapter we will first introduce the vanilla collaborative deep learning (CDL)

model, which performs joint deep representation learning and recommendation under

the BDL framework. After that, we will present a substantially more advanced version

of CDL, dubbed collaborative recurrent autoencoders (CRAE), which jointly models

sequence generation and recommendation. It is also worth noting that although

CDL works well in the recommendation task, it fails in the sequence generation task

(which CRAE does well in) since it is not a sequence-based model.

4.1 Vanilla Collaborative Deep Learning

In this section, we will cover the motivation, formulation, learning algorithms,

and empirical results on CDL, followed by a brief summary and discussion on future

work.

4.1.1 Introduction

Due to the abundance of choice in many online services, recommender systems

(RS) now play an increasingly significant role [143]. For individuals, using RS

allows us to make more effective use of information. Besides, many companies

(e.g., Amazon and Netflix) have been using RS extensively to target their customers

by recommending products or services. Existing methods for RS can roughly be

categorized into three classes [18]: content-based methods, collaborative filtering

(CF) based methods, and hybrid methods. Content-based methods [70] make use of
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user profiles or product descriptions for recommendation. CF-based methods [96,103]

use the past activities or preferences, such as user ratings on items, without using

user or product content information. Hybrid methods [2, 59, 78] seek to get the best

of both worlds by combining content-based and CF-based methods.

Because of privacy concerns, it is generally more difficult to collect user profiles

than past activities. Nevertheless, CF-based methods do have their limitations.

The prediction accuracy often drops significantly when the ratings are very sparse.

Moreover, they cannot be used for recommending new products which have yet to

receive rating information from users. Consequently, it is inevitable for CF-based

methods to exploit auxiliary information and hence hybrid methods have gained

popularity in recent years.

According to whether two-way interaction exists between the rating information

and auxiliary information, we may further divide hybrid methods into two sub-

categories: loosely coupled and tightly coupled methods. Loosely coupled methods

like [104] process the auxiliary information once and then use it to provide features

for the CF models. Since information flow is one-way, the rating information cannot

provide feedback to guide the extraction of useful features. For this sub-category,

improvement often has to rely on a manual and tedious feature engineering process.

On the contrary, tightly coupled methods like [117] allow two-way interaction. On

one hand, the rating information can guide the learning of features. On the other

hand, the extracted features can further improve the predictive power of the CF

models (e.g., based on matrix factorization of the sparse rating matrix). With two-

way interaction, tightly coupled methods can automatically learn features from the

auxiliary information and naturally balance the influence of the rating and auxiliary

information. This is why tightly coupled methods often outperform loosely coupled

ones [120].

Collaborative topic regression (CTR) [117] is a recently proposed tightly coupled

method. It is a probabilistic graphical model that seamlessly integrates a topic model,

latent Dirichlet allocation (LDA) [16], and a model-based CF method, probabilistic

matrix factorization (PMF) [103]. CTR is an appealing method in that it produces

promising and interpretable results. Nevertheless, the latent representation learned

is often not effective enough especially when the auxiliary information is very sparse.

It is this representation learning problem that we will focus on in this section.

On the other hand, deep learning models recently show great potential for

learning effective representations and deliver state-of-the-art performance in computer

vision [130] and natural language processing [64,102] applications. In deep learning
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models, features are learned in a supervised or unsupervised manner. Although

they are more appealing than shallow models in that the features can be learned

automatically (e.g., effective feature representation is learned from text content), they

are inferior to shallow models such as CF in capturing and learning the similarity

and implicit relationship between items. This calls for integrating deep learning with

CF by performing deep learning collaboratively.

Unfortunately, very few attempts have been made to develop deep learning

models for CF. [50] uses restricted Boltzmann machines instead of the conventional

matrix factorization formulation to perform CF and [39] extends this work by

incorporating user-user and item-item correlations. Although these methods involve

both deep learning and CF, they actually belong to CF-based methods because

they do not incorporate content information like CTR, which is crucial for accurate

recommendation. [100] uses low-rank matrix factorization in the last weight layer of

a deep network to significantly reduce the number of model parameters and speed

up training, but it is for classification instead of recommendation tasks. On music

recommendation, [88, 132] directly use conventional CNN or deep belief networks

(DBN) to assist representation learning for content information, but the deep learning

components of their models are deterministic without modeling the noise and hence

they are less robust. The models achieve performance boost mainly by loosely

coupled methods without exploiting the interaction between content information and

ratings. Besides, the CNN is linked directly to the rating matrix, which means the

models will perform poorly when the ratings are sparse, as shown in the following

experiments.

To address the challenges above, we develop a hierarchical Bayesian model called

collaborative deep learning (CDL) as a novel tightly coupled method for RS. We first

present a Bayesian formulation of a deep learning model called stacked denoising

autoencoder (SDAE) [114]. With this, we then present our CDL model which tightly

couples deep representation learning for the content information and collaborative

filtering for the ratings (feedback) matrix, allowing two-way interaction between the

two. Experiments show that CDL significantly outperforms the state of the art. Note

that although we present CDL as using SDAE for its feature learning component,

CDL is actually a more general framework which can also admit other deep learning

models such as deep Boltzmann machines [101], recurrent neural networks [43], and

convolutional neural networks [69].

The main contribution of CDL is summarized below:
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• By performing deep learning collaboratively, CDL can simultaneously extract

an effective deep feature representation from content and capture the similarity

and implicit relationship between items (and users). The learned representation

may also be used for tasks other than recommendation.

• Unlike previous deep learning models which use simple target like classification

[64] and reconstruction [114], we propose to use CF as a more complex target

in a probabilistic framework.

• Besides the algorithm for attaining maximum a posteriori (MAP) estimates,

we also derive a sampling-based algorithm for the Bayesian treatment of CDL,

which, interestingly, turns out to be a Bayesian generalized version of back-

propagation.

• To the best of our knowledge, CDL is the first hierarchical Bayesian model to

bridge the gap between state-of-the-art deep learning models and RS. Besides,

due to its Bayesian nature, CDL can be easily extended to incorporate other

auxiliary information to further boost the performance.

• Extensive experiments on three real-world datasets from different domains

show that CDL can significantly advance the state of the art.

4.1.2 Collaborative Deep Learning

Similar to the work in [117], the recommendation task considered in this section

takes implicit feedback [60] as the training and test data. The entire collection of

J items (articles or movies) is represented by a J-by-S matrix Xc, where row j is

the bag-of-words vector Xc,j∗ for item j based on a vocabulary of size S. With I

users, we define an I-by-J binary rating matrix R = [Rij]I×J . For example, in the

dataset citeulike-a Rij = 1 if user i has article j in his or her personal library and

Rij = 0 otherwise. Given part of the ratings in R and the content information Xc,

the problem is to predict the other ratings in R. Note that although we focus on

movie recommendation (where plots of movies are considered as content information)

and article recommendation like [117] in this section, our model is general enough to

handle other recommendation tasks (e.g., tag recommendation).

The matrix Xc plays the role of clean input to the SDAE while the noise-corrupted

matrix, also a J-by-S matrix, is denoted by X0. The output of layer l of the SDAE

is denoted by Xl which is a J-by-Kl matrix. Similar to Xc, row j of Xl is denoted

by Xl,j∗. Wl and bl are the weight matrix and bias vector, respectively, of layer l,

Wl,∗n denotes column n of Wl, and L is the number of layers. For convenience, we
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use W+ to denote the collection of all layers of weight matrices and biases. Note

that an L/2-layer SDAE corresponds to an L-layer network.

We are now ready to present details of our CDL model. We first give a Bayesian

formulation of SDAE, followed by the presentation of CDL as a hierarchical Bayesian

model, which tightly integrates the ratings and content information.

Generalized Bayesian SDAE

If we assume that both the clean input Xc and the corrupted input X0 are

observed, similar to [11,12,25,83], we can define the following generative process:

1. For each layer l of the SDAE network,

(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl). (4.1)

2. For each item j, draw a clean input 1

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IJ).

Note that if λs goes to infinity, the Gaussian distribution in Equation (4.1) will

become a Dirac delta distribution [109] centered at σ(Xl−1,j∗Wl + bl), where σ(·) is

the sigmoid function. The model will degenerate to be a Bayesian formulation of

SDAE. That is why we call it generalized SDAE.

Note that the first L/2 layers of the network act as an encoder and the last L/2

layers act as a decoder. Maximization of the posterior probability is equivalent to

minimization of the reconstruction error with weight decay taken into consideration.

1Note that while generation of the clean input Xc from XL is part of the generative process
of the Bayesian SDAE, generation of the noise-corrupted input X0 from Xc is an artificial noise
injection process to help the SDAE learn a more robust feature representation.
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Collaborative Deep Learning

Using the Bayesian SDAE as a component, the generative process of CDL is

defined as follows:

1. For each layer l of the SDAE network,

(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).

2. For each item j,

(a) Draw a clean input Xc,j∗ ∼ N (XL,j∗, λ
−1
n IJ).

(b) Draw a latent item offset vector εj ∼ N (0, λ−1
v IK) and then set the latent

item vector to be:

vj = εj + XT
L
2
,j∗.

3. Draw a latent user vector for each user i:

ui ∼ N (0, λ−1
u IK).

4. Draw a rating Rij for each user-item pair (i, j):

Rij ∼ N (uTi vj,C
−1
ij ).

Here λw, λn, λu, λs, and λv are hyperparameters and Cij is a confidence parameter

similar to that for CTR (Cij = a if Rij = 1 and Cij = b otherwise). Note that the

middle layer XL/2 serves as a bridge between the ratings and content information.

This middle layer, along with the latent offset εj, is the key that enables CDL to

simultaneously learn an effective feature representation and capture the similarity

and (implicit) relationship between items (and users). Similar to the generalized

SDAE, for computational efficiency, we can also take λs to infinity.
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The graphical model of CDL when λs approaches positive infinity is shown in

Figure 4.1, where, for notational simplicity, we use x0, xL/2, and xL in place of XT
0,j∗,

XT
L
2
,j∗, and XT

L,j∗, respectively.

Notes on I.I.D. versus Non-I.I.D. Settings

As mentioned in Section 1.3, conventional deep learning models typically handle

i.i.d. data points while CDL can handle non-i.i.d. data points. Specifically, in

Bayesian SDAE, we can see {(X0,j∗,Xc,0,j∗)}Jj=1 as the set of data points (see Figure

4.1). Without the PMF part, Bayesian SDAE essentially assumes that data points

are i.i.d. and there is no correlation among data points. On the other hand, CDL

connects the middle-layer representation {XL
2
,j∗}Jj=1 to the rating matrix R (which

captures the correlation among items) through the item latent vectors {vj}Jj=1. Hence

given R, CDL implicitly assumes generating {vj}Jj=1, {XL
2
,j∗}Jj=1, and the data points

{(X0,j∗,Xc,0,j∗)}Jj=1 in sequence, which is non-i.i.d.

Maximum A Posteriori Estimates

Based on the CDL model above, all parameters could be treated as random

variables so that fully Bayesian methods such as Markov chain Monte Carlo (MCMC)

or variational approximation methods [63] may be applied. However, such treatment

typically incurs high computational cost. Besides, since CTR is our primary baseline

for comparison, it would be fair and reasonable to take an approach analogous to that

used in CTR. Consequently, we devise below an EM-style algorithm for obtaining

the MAP estimates, as in [117].

Like in CTR, maximizing the posterior probability is equivalent to maximizing

the joint log-likelihood of U, V, {Xl}, Xc, {Wl}, {bl}, and R given λu, λv, λw, λs,

and λn:

L =− λu
2

∑
i

‖ui‖2
2 −

λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λv
2

∑
j

‖vj −XT
L
2
,j∗‖

2
2 −

λn
2

∑
j

‖XL,j∗ −Xc,j∗‖2
2

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖2
2

−
∑
i,j

Cij

2
(Rij − uTi vj)

2.
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Figure 4.1: On the left is the graphical model of CDL. The part inside
the dashed rectangle represents an SDAE. An example SDAE with
L = 2 is shown. On the right is the graphical model of the degenerated
CDL. The part inside the dashed rectangle represents the encoder of an
SDAE. An example SDAE with L = 2 is shown on the right of it. Note
that although L is still 2, the decoder of the SDAE vanishes. To prevent
clutter, we omit all variables xl except x0 and xL/2 in the graphical
models.

If λs goes to infinity, the likelihood becomes:

L =− λu
2

∑
i

‖ui‖2
2 −

λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λv
2

∑
j

‖vj − fe(X0,j∗,W
+)T‖2

2

− λn
2

∑
j

‖fr(X0,j∗,W
+)−Xc,j∗‖2

2

−
∑
i,j

Cij

2
(Rij − uTi vj)

2, (4.2)

where the encoder function fe(·,W+) takes the corrupted content vector X0,j∗ of

item j as input and computes the encoding of the item, and the function fr(·,W+)

also takes X0,j∗ as input, computes the encoding and then the reconstructed content

vector of item j. For example, if the number of layers L = 6, fe(X0,j∗,W
+) is the

output of the third layer while fr(X0,j∗,W
+) is the output of the sixth layer.

From the perspective of optimization, the third term in the objective function

(4.2) above is equivalent to a multi-layer perceptron using the latent item vectors vj as

target while the fourth term is equivalent to an SDAE minimizing the reconstruction

error. Seeing from the view of neural networks (NN), when λs approaches positive

infinity, training of the probabilistic graphical model of CDL in Figure 4.1(left) would

degenerate to simultaneously training two neural networks overlaid together with a

common input layer (the corrupted input) but different output layers, as shown in
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Figure 4.2: NN representation for degenerated CDL.

Figure 4.2. Note that the second network is much more complex than typical neural

networks due to the involvement of the rating matrix.

When the ratio λn/λv approaches positive infinity, it will degenerate to a two-step

model in which the latent representation learned using SDAE is put directly into the

CTR. Another extreme happens when λn/λv goes to zero where the decoder of the

SDAE essentially vanishes. On the right of Figure 4.1 is the graphical model of the

degenerated CDL when λn/λv goes to zero. As demonstrated in the experiments,

the predictive performance will suffer greatly for both extreme cases.

For ui and vj, coordinate ascent similar to [60,117] is used. Given the current

W+, we compute the gradients of L with respect to ui and vj and set them to zero,

leading to the following update rules:

ui ← (VCiV
T + λuIK)−1VCiRi

vj ← (UCiU
T + λvIK)−1(UCjRj + λvfe(X0,j∗,W

+)T ),

where U = (ui)
I
i=1, V = (vj)

J
j=1, Ci = diag(Ci1, . . . ,CiJ) is a diagonal matrix,

Ri = (Ri1, . . . ,RiJ)T is a column vector containing all the ratings of user i, and Cij

reflects the confidence controlled by a and b as discussed in [60].

Given U and V, we can learn the weights Wl and biases bl for each layer using

the back-propagation learning algorithm. The gradients of the likelihood with respect
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to Wl and bl are as follows:

∇Wl
L = −λwWl

− λv
∑
j

∇Wl
fe(X0,j∗,W

+)T (fe(X0,j∗,W
+)T − vj)

− λn
∑
j

∇Wl
fr(X0,j∗,W

+)(fr(X0,j∗,W
+)−Xc,j∗)

∇blL = −λwbl

− λv
∑
j

∇blfe(X0,j∗,W
+)T (fe(X0,j∗,W

+)T − vj)

− λn
∑
j

∇blfr(X0,j∗,W
+)(fr(X0,j∗,W

+)−Xc,j∗).

By alternating the update of U, V, Wl, and bl, we can find a local optimum for L .

Several commonly used techniques such as using a momentum term may be used to

alleviate the local optimum problem.

Prediction

Let D be the observed test data. Similar to [117], we use the point estimates of

ui, W+ and εj to calculate the predicted rating:

E[Rij|D] ≈ E[ui|D]T (E[fe(X0,j∗,W
+)T |D] + E[εj|D]),

where E[·] denotes the expectation operation. In other words, we approximate the

predicted rating as:

R∗ij ≈ (u∗j)
T (fe(X0,j∗,W

+∗)T + ε∗j) = (u∗i )
Tv∗j .

Note that for any new item j with no rating in the training data, its offset ε∗j will be

0.
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4.1.3 Experiments

Extensive experiments are conducted on three real-world datasets from different

domains to demonstrate the effectiveness of our model both quantitatively and

qualitatively2.

Datasets

We use three datasets from different real-world domains, two from CiteULike3

and one from Netflix, for our experiments. The first two datasets, from [120], were

collected in different ways, specifically, with different scales and different degrees

of sparsity to mimic different practical situations. The first dataset, citeulike-a, is

mostly from [117]. The second dataset, citeulike-t, was collected independently of

the first one. They manually selected 273 seed tags and collected all the articles

with at least one of those tags. Similar to [117], users with fewer than 3 articles are

not included. As a result, citeulike-a contains 5,551 users and 16,980 items. For

citeulike-t , the numbers are 7,947 and 25,975. We can see that citeulike-t contains

more users and items than citeulike-a. Also, citeulike-t is much sparser as only 0.07%

of its user-item matrix entries contain ratings but citeulike-a has ratings in 0.22% of

its user-item matrix entries.

The last dataset, Netflix, consists of two parts. The first part, with ratings and

movie titles, is from the Netflix challenge dataset. The second part, with plots of the

corresponding movies, was collected by us from IMDB 4. Similar to [146], in order to

be consistent with the implicit feedback setting of the first two datasets, we extract

only positive ratings (rating 5) for training and testing. After removing users with

less than 3 positive ratings and movies without plots, we have 407,261 users, 9,228

movies, and 15,348,808 ratings in the final dataset.

We follow the same procedure as that in [117] to preprocess the text information

(item content) extracted from the titles and abstracts of the articles and the plots of

the movies. After removing stop words, the top S discriminative words according to

the tf-idf values are chosen to form the vocabulary (S is 8000, 20000, and 20000 for

the three datasets).

2Code and data are available at www.wanghao.in
3CiteULike allows users to create their own collections of articles. There are abstract, title,

and tags for each article. More details about the CiteULike data can be found at http://www.

citeulike.org.
4http://www.imdb.com
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Evaluation Scheme

For each dataset, similar to [120, 122], we randomly select P items associated

with each user to form the training set and use all the rest of the dataset as the

test set. To evaluate and compare the models under both sparse and dense settings,

we set P to 1 and 10, respectively, in our experiments. For each value of P , we

repeat the evaluation five times with different randomly selected training sets and

the average performance is reported.

As in [94,117,120], we use recall as the performance measure because the rating

information is in the form of implicit feedback [60,96]. Specifically, a zero entry may

be due to the fact that the user is not interested in the item, or that the user is not

aware of its existence. As such, precision is not a suitable performance measure. Like

most recommender systems, we sort the predicted ratings of the candidate items and

recommend the top M items to the target user. The recall@M for each user is then

defined as:

recall@M =
number of items that the user likes among the top M

total number of items that the user likes
.

The final result reported is the average recall over all users.

Another evaluation metric is the mean average precision (mAP). Exactly the

same as [88], we set the cutoff point at 500 for each user.

Baselines and Experimental Settings

The models included in our comparison are listed as follows:

• CMF: Collective Matrix Factorization [107] is a model incorporating different

sources of information by simultaneously factorizing multiple matrices. In this

section, the two factorized matrices are R and Xc.

• SVDFeature: SVDFeature [28] is a model for feature-based collaborative

filtering. In this section we use the content information Xc as raw features to

feed into SVDFeature.

• DeepMusic: DeepMusic [88] is a model for music recommendation mentioned

in Section 4.1.1. We use the variant, a loosely coupled method, that achieves

the best performance as our baseline.
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Figure 4.3: Performance comparison of CDL, CTR, DeepMusic, CMF,
and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t,
and Netflix in the sparse setting. A 2-layer CDL is used.
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Figure 4.4: Performance comparison of CDL, CTR, DeepMusic, CMF,
and SVDFeature based on recall@M for datasets citeulike-a, citeulike-t,
and Netflix in the dense setting. A 2-layer CDL is used.

• CTR: Collaborative Topic Regression [117] is a model performing topic mod-

eling and collaborative filtering simultaneously as mentioned in the previous

section.

• CDL: Collaborative Deep Learning is our proposed model as described above.

It allows different levels of model complexity by varying the number of layers.

In the experiments, we first use a validation set to find the optimal hyperparame-

ters for CMF, SVDFeature, CTR, and DeepMusic. For CMF, we set the regularization

hyperparameters for the latent factors of different contexts to 10. After the grid

search, we find that CMF performs best when the weights for the rating matrix and

content matrix (BOW) are both 5 in the sparse setting. For the dense setting the

weights are 8 and 2, respectively. For SVDFeature, the best performance is achieved

when the regularization hyperparameters for the users and items are both 0.004 with

the learning rate equal to 0.005. For DeepMusic, we find that the best performance

is achieved using a CNN with two convolutional layers. We also try our best to tune

the other hyperparameters. For CTR, we find that it can achieve good prediction

performance when λu = 0.1, λv = 10, a = 1, b = 0.01, and K = 50 (note that a

and b determine the confidence parameters Cij). For CDL, we directly set a = 1,

b = 0.01, K = 50 and perform grid search on the hyperparameters λu, λv, λn, and

λw. For the grid search, we split the training data and use 5-fold cross validation.
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Table 4.1: mAP for three datasets

citeulike-a citeulike-t Netflix
CDL 0.0514 0.0453 0.0312
CTR 0.0236 0.0175 0.0223
DeepMusic 0.0159 0.0118 0.0167
CMF 0.0164 0.0104 0.0158
SVDFeature 0.0152 0.0103 0.0187

We use a masking noise with a noise level of 0.3 to get the corrupted input X0

from the clean input Xc. For CDL with more than one layer of SDAE (L > 2), we

use a dropout rate [6, 51,116] of 0.1 to achieve adaptive regularization. In terms of

network architecture, the number of hidden units Kl is set to 200 for l such that

l 6= L/2 and 0 < l < L. While both K0 and KL are equal to the number of words S

in the dictionary, KL/2 is set to K which is the number of dimensions of the learned

representation. For example, the 2-layer CDL model (L = 4) has a Bayesian SDAE

of architecture ‘8000-200-50-200-8000’ for the citeulike-a dataset.

Quantitative Comparison

Figures 4.3 and 4.4 show the results that compare CDL, CTR, DeepMusic,

CMF, and SVDFeature using the three datasets under both the sparse (P = 1) and

dense (P = 10) settings. We can see that CTR is a strong baseline which beats

DeepMusic, CMF, and SVDFeature in all datasets even though DeepMusic has a deep

architecture. In the sparse setting, CMF outperforms SVDFeature most of the time

and sometimes even achieves performance comparable to CTR. DeepMusic performs

poorly due to lack of ratings and overfitting. In the dense setting, SVDFeature is

significantly better than CMF for citeulike-a and citeulike-t but is inferior to CMF

for Netflix. DeepMusic is still slightly worse than CTR due to the reasons mentioned

in Section 4.1.1. To focus more specifically on comparing CDL with CTR, we can

see that for citeulike-a, 2-layer CDL outperforms CTR by a margin of 4.2%∼6.0% in

the sparse setting and 3.3%∼4.6% in the dense setting. If we increase the number of

layers to 3 (L = 6), the margin will go up to 5.8%∼8.0% and 4.3%∼5.8%, respectively.

Similarly for citeulike-t, 2-layer CDL outperforms CTR by a margin of 10.4%∼13.1%

in the sparse setting and 4.7%∼7.6% in the dense setting. When the number of

layers is increased to 3, the margin will even go up to 11.0%∼14.9% and 5.2%∼8.2%,

respectively. For Netflix, 2-layer CDL outperforms CTR by a margin of 1.9%∼5.9%

in the sparse setting and 1.5%∼2.0% in the dense setting. As we can see, seamless
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Table 4.2: Recall@300 in the sparse setting (%)

#layers 1 2 3
citeulike-a 27.89 31.06 30.70
citeulike-t 32.58 34.67 35.48
Netflix 29.20 30.50 31.01
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Figure 4.5: Performance of CDL based on recall@M for different values
of λn on citeulike-t. The left plot is for L = 2 and the right one is for
L = 6.

Table 4.3: Recall@300 in the dense setting (%)

#layers 1 2 3
citeulike-a 58.35 59.43 59.31
citeulike-t 52.68 53.81 54.48
Netflix 69.26 70.40 70.42

and successful integration of deep learning and RS requires careful designs to avoid

overfitting and achieve significant performance boost.

Table 4.1 shows the mAP for all models in the sparse settings. We can see that

the mAP of CDL is almost or more than twice of CTR. Tables 4.2 and 4.3 show

the recall@300 results when CDL with different numbers of layers are applied to

the three datasets under both the sparse and dense settings. As we can see, for

citeulike-t and Netflix, the recall increases as the number of layers increases. For

citeulike-a, CDL starts to overfit when it exceeds two layers. Since the standard

deviation is always very small (4.31× 10−5 ∼ 9.31× 10−3), we do not include it in

the figures and tables as it is not noticeable anyway.

Note that the results are somewhat different for the first two datasets although

they are from the same domain. This is due to the different ways in which the

datasets were collected, as discussed above. Specifically, both the text information
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and the rating matrix in citeulike-t are much sparser.5 By seamlessly integrating

deep representation learning for content information and CF for the rating matrix,

CDL can handle both the sparse rating matrix and the sparse text information much

better and learn a much more effective latent representation for each item and hence

each user.

Figure 4.5 shows the results for different values of λn using citeulike-t under the

dense setting. We set λu = 0.01, λv = 100, and L to 2 and 6. Similar phenomena

are observed when the number of layers and the value of P are varied but they are

omitted here due to space constraints. As mentioned in the previous section, when λn

is extremely large, λn/λv will approach positive infinity so that CDL degenerates to

two separate models. In this case the latent item representation will be learned by the

SDAE in an unsupervised manner and then it will be put directly into (a simplified

version of) the CTR. Consequently, there is no interaction between the Bayesian

SDAE and the collaborative filtering component based on matrix factorization and

hence the prediction performance will suffer greatly. For the other extreme when

λn is extremely small, λn/λv will approach zero so that CDL degenerates to that

in Figure 4.1 in which the decoder of the Bayesian SDAE component essentially

vanishes. This way the encoder of the Bayesian SDAE component will easily overfit

the latent item vectors learned by simple matrix factorization. As we can see in

Figure 4.5, the prediction performance degrades significantly as λn gets very large or

very small. When λn < 0.1, the recall@M is already very close to (or even worse

than) the result of PMF.

Qualitative Comparison

To gain a better insight into CDL, we first take a look at two example users

in the citeulike-t dataset and represent the profile of each of them using the top

three matched topics. We examine the top 10 recommended articles returned by a

3-layer (L = 6) CDL and CTR. The models are trained under the sparse setting

(P = 1). From Table 4.4, we can speculate that user I might be a computer

scientist with focus on tag recommendation, as clearly indicated by the first topic

in CDL and the second one in CTR. CDL correctly recommends many articles on

tagging systems while CTR focuses on social networks instead. When digging into

the data, we find that the only rated article in the training data is ‘What drives

content tagging: the case of photos on Flickr’, which is an article that talks about

5Each article in citeulike-a has 66.6 words on average and that for citeulike-t is 18.8.
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Table 4.4: Interpretability of the latent structures learned

user I (CDL) in user’s lib?

top 3 topics
1. search, image, query, images, queries, tagging, index, tags, searching, tag
2. social, online, internet, communities, sharing, networking, facebook, friends, ties, participation
3. collaborative, optimization, filtering, recommendation, contextual, planning, items, preferences

top 10 articles

1. The structure of collaborative tagging Systems yes
2. Usage patterns of collaborative tagging systems yes
3. Folksonomy as a complex network no
4. HT06, tagging paper, taxonomy, Flickr, academic article, to read yes
5. Why do tagging systems work yes
6. Information retrieval in folksonomies: search and ranking no
7. tagging, communities, vocabulary, evolution yes
8. The complex dynamics of collaborative tagging yes
9. Improved annotation of the blogosphere via autotagging and hierarchical clustering no
10. Collaborative tagging as a tripartite network yes

user I (CTR) in user’s lib?

top 3 topics
1. social, online, internet, communities, sharing, networking, facebook, friends, ties, participation
2. search, image, query, images, queries, tagging, index, tags, searching, tag
3. feedback, event, transformation, wikipedia, indicators, vitamin, log, indirect, taxonomy

top 10 articles

1. HT06, tagging paper, taxonomy, Flickr, academic article, to read yes
2. Structure and evolution of online social networks no
3. Group formation in large social networks: membership, growth, and evolution no
4. Measurement and analysis of online social networks no
5. A face(book) in the crowd: social searching vs. social browsing no
6. The strength of weak ties no
7. Flickr tag recommendation based on collective knowledge no
8. The computer-mediated communication network no
9. Social capital, self-esteem, and use of online social network sites: A longitudinal analysis no
10. Increasing participation in online communities: A framework for human-computer interaction no

user II (CDL) in user’s lib?

top 3 topics
1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy
2. mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad
3. hybrid, orientation, stress, fluctuations, load, temperature, centrality, mechanical, two-dimensional, heat

top 10 articles

1. Modeling the flow of dense suspensions of deformable particles in three dimensions yes
2. Simplified particulate model for coarse-grained hemodynamics simulations yes
3. Lattice Boltzmann simulations of blood flow: non-newtonian rheology and clotting processes yes
4. A genome-wide association study for celiac disease identifies risk variants yes
5. Efficient and accurate simulations of deformable particles yes
6. A multiscale model of thrombus development yes
7. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery yes
8. Lattice Boltzmann modeling of thrombosis in giant aneurysms yes
9. A lattice Boltzmann simulation of clotting in stented aneursysms yes
10. Predicting dynamics and rheology of blood flow yes

user II (CTR) in user’s lib?

top 3 topics
1. flow, cloud, codes, matter, boundary, lattice, particles, galaxies, fluid, galaxy
2. transition, equations, dynamical, discrete, equation, dimensions, chaos, transitions, living, trust
3. mobile, membrane, wireless, sensor, mobility, lipid, traffic, infrastructure, monitoring, ad

top 10 articles

1. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery yes
2. The metallicity evolution of star-forming galaxies from redshift 0 to 3 no
3. Formation versus destruction: the evolution of the star cluster population in galaxy mergers no
4. Clearing the gas from globular clusters no
5. Macroscopic effects of the spectral structure in turbulent flows no
6. The WiggleZ dark energy survey no
7. Lattice-Boltzmann simulation of blood flow in digitized vessel networks no
8. Global properties of ’ordinary’ early-type galaxies no
9. Proteus : a direct forcing method in the simulations of particulate flows yes
10. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions yes

the impact of social networks on tagging behaviors. This may explain why CTR

focuses its recommendation on social networks. On the other hand, CDL can better

understand the key points of the article (i.e., tagging and CF) to make appropriate

recommendation accordingly. Consequently, the precision of CDL and CTR is 70%

and 10%, respectively.
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Table 4.5: Example user with recommended movies

User III
Movies in the training set: Moonstruck, True Romance, Johnny English, American Beauty, The
Princess Bride, Top Gun, Double Platinum, Rising Sun, Dead Poets Society, Waiting for Guffman

# training samples 2 4 10

Top 10 recommended
movies by CTR

Swordfish Pulp Fiction Best in Snow
A Fish Called Wanda A Clockwork Orange Chocolat
Terminator 2 Being John Malkovich Good Will Hunting
A Clockwork Orange Raising Arizona Monty Python and the Holy Grail
Sling Blade Sling Blade Being John Malkovich
Bridget Jones’s Diary Swordfish Raising Arizona
Raising Arizona A Fish Called Wanda The Graduate
A Streetcar Named Desire Saving Grace Swordfish
The Untouchables The Graduate Tootsie
The Full Monty Monster’s Ball Saving Private Ryan

# training samples 2 4 10

Top 10 recommended
movies by CDL

Snatch Pulp Fiction Good Will Hunting
The Big Lebowski Snatch Best in Show
Pulp Fiction The Usual Suspect The Big Lebowski
Kill Bill Kill Bill A Few Good Men
Raising Arizona Momento Monty Python and the Holy Grail
The Big Chill The Big Lebowski Pulp Fiction
Tootsie One Flew Over the Cuckoo’s Nest The Matrix
Sense and Sensibility As Good as It Gets Chocolat
Sling Blade Goodfellas The Usual Suspect
Swinger The Matrix CaddyShack
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From the matched topics returned by both CDL and CTR, user II might be a

researcher on blood flow dynamic theory particularly in the field of medical science.

CDL correctly captures the user profile and achieves a precision of 100%. However,

CTR recommends quite a few articles on astronomy instead. When examining the

data, we find that the only rated article returned by CTR is ‘Simulating deformable

particle suspensions using a coupled lattice-Boltzmann and finite-element method’.

As expected, this article is on deformable particle suspension and the flow of blood

cells. CTR might have misinterpreted this article, focusing its recommendation on

words like ‘flows’ and ‘formation’ separately. This explains why CTR recommends

articles like ‘Formation versus destruction: the evolution of the star cluster population

in galaxy mergers’ (formation) and ‘Macroscopic effects of the spectral structure in

turbulent flows’ (flows). As a result, its precision is only 30%.

From these two users, we can see that with a more effective representation, CDL

can capture the key points of articles and the user preferences more accurately (e.g.,

user I). Besides, it can model the co-occurrence and relations of words better (e.g.,

user II).

We next present another case study which is for the Netflix dataset under the

dense setting (P = 10). In this case study, we choose one user (user III) and vary the

number of ratings (positive feedback) in the training set given by the user from 1 to

10. The partition of training and test data remains the same for all other users. This

is to examine how the recommendation of CTR and CDL adapts as user III expresses

preference for more and more movies. Table 4.5 shows the recommendation lists of

CTR and CDL when the number of training samples is set to 2, 4, and 10. When

there are only two training samples, the two movies user III likes are ‘Moonstruck’

and ‘True Romance’, which are both romance movies. For now the precision of CTR

and CDL is close (20% and 30%). When two more samples are added, the precision

of CDL is boosted to 50% while that of CTR remains unchanged (20%). That is

because the two new movies, ‘Johnny English’ and ‘American Beauty’, belong to

action and drama movies. CDL successfully captures the user’s change of taste and

gets two more recommendations right but CTR fails to do so. Similar phenomena

can be observed when the number of training samples increases from 4 to 10. From

this case study, we can see that CDL is sensitive enough to changes of user taste and

hence can provide more accurate recommendation.
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4.1.4 Complexity Analysis and Implementation

Following the update rules of CDL, the computational complexity of updating

ui is O(K2J + K3), where K is the dimensionality of the learned representation

and J is the number of items. Note that usually J is much larger than K. The

complexity for vj is O(K2I + K3 + SK1), where I is the number of users, S is

the size of the vocabulary, and K1 is the dimensionality of the output in the first

layer. Note that the third term O(SK1) is the cost of computing the output of the

encoder and it is dominated by the computation of the first layer. For the update

of all the weights and biases, the complexity is O(JSK1) since the computation is

dominated by the first layer. Thus for a complete epoch the total time complexity

is O(JSK1 +K2J2 +K2I2) (the term on K3 is omitted since I and J are usually

much larger than K).

All our experiments are conducted on servers with 2 Intel E5-2650 CPUs and

4 NVIDIA Tesla M2090 GPUs each. Using the MATLAB implementation with

GPU/C++ acceleration, each epoch takes only about 40 seconds and each run takes

200 epochs for the first two datasets. For Netflix it takes about 60 seconds per

epoch and needs much fewer epochs (about 100) to get satisfactory recommendation

performance. Since Netflix is much larger than the other two datasets, this shows

that CDL is very scalable. We expect that changing the implementation to a pure

C++/CUDA one would significantly reduce the time cost.

4.1.5 Conclusion and Future Work

We have demonstrated in this section that state-of-the-art performance can

be achieved by jointly performing deep representation learning for the content

information and collaborative filtering for the ratings (feedback) matrix. As far as we

know, CDL is the first hierarchical Bayesian model to bridge the gap between state-

of-the-art deep learning models and RS. In terms of learning, besides the algorithm

for attaining the MAP estimates, we also derive a sampling-based algorithm for the

Bayesian treatment of CDL as a Bayesian generalized version of back-propagation.

Among the possible extensions that could be made to CDL, the bag-of-words

representation may be replaced by more powerful alternatives, such as [85]. The

Bayesian nature of CDL also provides potential performance boost if other side

information is incorporated as in [123]. Besides, as remarked above, CDL actually

provides a framework that can also admit deep learning models other than SDAE.
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One promising choice is the convolutional neural network model which, among other

things, can explicitly take the context and order of words into account. Further

performance boost may be possible when using such deep learning models.

4.2 Collaborative Recurrent Autoencoders

In this section, we introduce a recurrent version of CDL called collaborative

recurrent autoencoders (CRAE). Similar to the previous section, we will cover the

motivation, formulation, learning algorithms, and empirical results of CRAE, and

conclude with discussion on future work.

4.2.1 Introduction

With the high prevalence and abundance of Internet services, recommender

systems are becoming increasingly important to attract users because they can help

users make effective use of the information available. Companies like Netflix have

been using recommender systems extensively to target users and promote products.

Existing methods for recommender systems can be roughly categorized into three

classes [98]: content-based methods that use the user profiles or product descriptions

only, collaborative filtering (CF) based methods that use the ratings only, and hybrid

methods that make use of both. Hybrid methods using both types of information

can get the best of both worlds and, as a result, usually outperform content-based

and CF-based methods.

Among the hybrid methods, collaborative topic regression (CTR) [117] was

proposed to integrate a topic model and probabilistic matrix factorization (PMF) [103].

CTR is an appealing method in that it produces both promising and interpretable

results. However, CTR uses a bag-of-words representation and ignores the order of

words and the local context around each word, which can provide valuable information

when learning article representation and word embeddings. Deep learning models like

convolutional neural networks (CNN) which use layers of sliding windows (kernels)

have the potential of capturing the order and local context of words. However, the

kernel size in a CNN is fixed during training. To achieve good enough performance,

sometimes an ensemble of multiple CNNs with different kernel sizes has to be used.

A more natural and adaptive way of modeling text sequences would be to use gated

recurrent neural network (RNN) models [29, 54, 110]. A gated RNN takes in one
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word (or multiple words) at a time and lets the learned gates decide whether to

incorporate or to forget the word. Intuitively, if we can generalize gated RNNs

to the CF setting (non-i.i.d.) to jointly model the generation of sequences and

the relationship between items and users (rating matrices), the recommendation

performance could be significantly boosted.

Nevertheless, very few attempts have been made to develop feedforward deep

learning models for CF, let alone recurrent ones. This is due partially to the

fact that deep learning models, like many machine learning models, assume i.i.d.

inputs. [39, 49, 50] use restricted Boltzmann machines and RNN instead of the

conventional matrix factorization (MF) formulation to perform CF. Although these

methods involve both deep learning and CF, they actually belong to CF-based

methods because they do not incorporate the content information like CTR, which is

crucial for accurate recommendation. [100] uses low-rank MF in the last weight layer

of a deep network to reduce the number of parameters, but it is for classification

instead of recommendation tasks. There have also been nice explorations on music

recommendation [88,132] in which a CNN or deep belief network (DBN) is directly

used for content-based recommendation. However, the models are deterministic

and less robust since the noise is not explicitly modeled. Besides, the CNN is

directly linked to the ratings making the performance suffer greatly when the ratings

are sparse, as will be shown later in our experiments. Very recently, we proposed

collaborative deep learning (CDL) [127] as a probabilistic model for joint learning

of a probabilistic stacked denoising autoencoder (SDAE) [114] and collaborative

filtering. However, CDL is a feedforward model that uses bag-of-words as input and

it does not model the order-aware generation of sequences. Consequently, the model

would have inferior recommendation performance and is not capable of generating

sequences at all, which will be shown in our experiments. Besides order-awareness,

another drawback of CDL is its lack of robustness (see Section 4.2.2 for details).

To address these problems, we propose a hierarchical Bayesian generative model

called collaborative recurrent autoencoder (CRAE) to jointly model the order-aware

generation of sequences (in the content information) and the rating information in a

CF setting. Our main contributions are:

• By exploiting recurrent deep learning collaboratively, CRAE is able to so-

phisticatedly model the generation of items (sequences) while extracting the

implicit relationship between items (and users). We design a novel pooling

scheme for pooling variable-length sequences into fixed-length vectors and also

45



Section 4.2 Hao Wang

propose a new denoising scheme to effectively avoid overfitting. Besides for

recommendation, CRAE can also be used to generate sequences on the fly.

• To the best of our knowledge, CRAE is the first model that bridges the

gap between RNN and CF, especially with respect to hybrid methods for

recommender systems. Besides, the Bayesian nature also enables CRAE

to seamlessly incorporate other auxiliary information to further boost the

performance.

• Extensive experiments on real-world datasets from different domains show that

CRAE can substantially improve on the state of the art.

4.2.2 Collaborative Recurrent Autoencoder

Similar to [117], the recommendation task considered in this section takes implicit

feedback [60] as the training and test data. There are J items (e.g., articles or

movies) in the dataset. For item j, there is a corresponding sequence consisting of Tj

words where the vector e
(j)
t specifies the t-th word using the 1-of-S representation,

i.e., a vector of length S with the value 1 in only one element corresponding to the

word and 0 in all other elements. Here S is the vocabulary size of the dataset. We

define an I-by-J binary rating matrix R = [Rij]I×J where I denotes the number of

users. For example, in the CiteULike dataset, Rij = 1 if user i has article j in his or

her personal library and Rij = 0 otherwise. Given some of the ratings in R and the

corresponding sequences of words e
(j)
t (e.g., titles of articles or plots of movies), the

problem is to predict the other ratings in R.

In the following text, e
′(j)
t denotes the noise-corrupted version of e

(j)
t and (h

(j)
t ; s

(j)
t )

refers to the concatenation of the two KW -dimensional column vectors. All input

weights (like Ye and Yi
e) and recurrent weights (like We and Wi

e) are of dimension-

ality KW -by-KW . The output state h
(j)
t , gate units (e.g., hot

(j)), and cell state s
(j)
t

are of dimensionality KW . K is the dimensionality of the final representation γj,

middle-layer units θj , and latent vectors vj and ui. IK or IKW denotes a K-by-K or

KW -by-KW identity matrix. For convenience we use W+ to denote the collection of

all weights and biases. Similarly h+
t is used to denote the collection of ht, hit, hft ,

and hot .

In this section we will first propose a generalization of the RNN called robust

recurrent networks (RRN), followed by the introduction of two key concepts, wildcard

denoising and beta-pooling, in our model. After that, the generative process of CRAE
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is provided to show how to generalize the RRN as a hierarchical Bayesian model

from an i.i.d. setting to a CF (non-i.i.d.) setting6.

Robust Recurrent Networks

One problem with RNN models like long short-term memory networks (LSTM)

is that the computation is deterministic without taking the noise into account, which

means it is not robust especially with insufficient training data. To address this

robustness problem, we propose RRN as a type of noisy gated RNN. In RRN, the

gates and other latent variables are designed to incorporate noise, making the model

more robust. Note that unlike [30, 33], the noise in RRN is directly propagated back

and forth in the network, without the need for using separate neural networks to

approximate the distributions of the latent variables. This is much more efficient

and easier to implement. Here we provide the generative process of RRN. Using

t = 1 . . . Tj to index the words in the sequence, we have (we drop the index j for

items for notational simplicity):

xt−1 ∼ N (Wwet−1, λ
−1
s IKW ), at−1 ∼ N (Yxt−1 + Wht−1 + b, λ−1

s IKW ) (4.3)

st ∼ N (σ(hft−1)� st−1 + σ(hit−1)� σ(at−1), λ−1
s IKW ), (4.4)

where xt is the word embedding of the t-th word, Ww is a KW -by-S word embedding

matrix, et is the 1-of-S representation mentioned above, � stands for the element-

wise product operation between two vectors, σ(·) denotes the sigmoid function, st is

the cell state of the t-th word, and b, Y, and W denote the biases, input weights,

and recurrent weights respectively. The forget gate units hft and the input gate

units hit in Equation (4.4) are drawn from Gaussian distributions depending on their

corresponding weights and biases Yf , Wf , Yi, Wi, bf , and bi:

hft ∼ N (Yfxt + Wfht + bf , λ−1
s IKW ), hit ∼ N (Yixt + Wiht + bi, λ−1

s IKW ).

The output ht depends on the output gate hot which has its own weights and biases

Yo, Wo, and bo:

hot ∼ N (Yoxt + Woht + bo, λ−1
s IKW ), ht ∼ N (tanh(st)� σ(hot−1), λ−1

s IKW ).

(4.5)

6See 4.1.2 for some notes on the i.i.d. and non-i.i.d. settings.
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In the RRN, information of the processed sequence is contained in the cell states

st and the output states ht, both of which are column vectors of length KW . Note

that RRN can be seen as a generalized and Bayesian version of LSTM [41]. Similar

to [29,110], two RRNs can be concatenated to form an encoder-decoder architecture.

Wildcard Denoising

Since the input and output are identical here, unlike [29, 110] where the input

is from the source language and the output is from the target language, this naive

RRN autoencoder can suffer from serious overfitting, even after taking noise into

account and reversing sequence order (we find that reversing sequence order in the

decoder [110] does not improve the recommendation performance).

One natural way of handling it is to borrow ideas from the denoising autoencoder

[114] by randomly dropping some of the words in the encoder. Unfortunately, directly

dropping words may mislead the learning of transition between words. For example,

if we drop the word ‘is’ in the sentence ‘this is a good idea’, the encoder will wrongly

learn the subsequence ‘this a’, which never appears in a grammatically correct

sentence.

Here we propose another denoising scheme, called wildcard denoising, where a

special word ‘〈wildcard〉’ is added to the vocabulary and we randomly select some

of the words and replace them with ‘〈wildcard〉’. This way, the encoder RRN will

take ‘this 〈wildcard〉 a good idea’ as input and successfully avoid learning wrong

subsequences. We call this denoising recurrent autoencoder (DRAE). Note that the

word ‘〈wildcard〉’ also has a corresponding word embedding. Intuitively this wildcard

denoising RRN autoencoder learns to fill in the blanks in sentences automatically. We

find this denoising scheme much better than the naive one. For example, in dataset

CiteULike wildcard denoising can provide a relative accuracy boost of about 20%.

Beta-Pooling

The RRN autoencoders would produce a representation vector for each input

word. In order to facilitate the factorization of the rating matrix, we need to pool

the sequence of vectors into one single vector of fixed length 2KW before it is further

encoded into a K-dimensional vector.

A natural way is to use a weighted average of the vectors. Unfortunately different

sequences may need weights of different size. For example, pooling a sequence of 8
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vectors needs a weight vector with 8 entries while pooling a sequence of 50 vectors

needs one with 50 entries. In other words, we need a weight vector of variable length

for our pooling scheme.

To tackle this problem, we propose to use a beta distribution. If six vectors are

to be pooled into one single vector (using weighted average), we can use the area wp

in the range (p−1
6
, p

6
) of the x-axis of the probability density function (PDF) for the

beta distribution Beta(a, b) as the pooling weight. Then the resulting pooling weight

vector becomes y = (w1, . . . , w6)
T . Since the total area is always 1 and the x-axis

is bounded, the beta distribution is perfect for this type of variable-length pooling

(hence the name beta-pooling). If we set the hyperparameters a = b = 1, it will be

equivalent to average pooling. If a is set large enough and b > a the PDF will peak

slightly to the left of x = 0.5, which means that the last time step of the encoder

RRN is directly used as the pooling result. With only two parameters, beta-pooling

is able to pool vectors flexibly enough without having the risk of overfitting the data.

The formal definition of beta-pooling, relevant experiments, and other details are

deferred to the next subsection when we introduce the PGM of CRAE and Section

4.2.3 (e.g., Figure 4.8 and Table 4.6).

CRAE as a Hierarchical Bayesian Model

Following the notation at the start of Section 4.2.2 and using the DRAE as a

component, we then provide the generative process of the CRAE (note that t indexes

words or time steps, j indexes sentences or documents, and Tj is the number of words

in document j):

Encoding (t = 1, 2, . . . , Tj): Generate x
′(j)
t−1, a

(j)
t−1, and s

(j)
t according to Equation

(4.3)-(4.4).

Compression and decompression (t = Tj + 1):

θj ∼ N (W1(h
(j)
Tj

; s
(j)
Tj

) + b1, λ
−1
s IK),

(h
(j)
Tj+1; s

(j)
Tj+1) ∼ N (W2 tanh(θj) + b2, λ

−1
s I2KW ). (4.6)
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Decoding (t = Tj +2, Tj +3, . . . , 2Tj +1): Generate a
(j)
t−1, s

(j)
t , and h

(j)
t according

to Equation (4.3)-(4.5), after which generate:

e
(j)
t−Tj−2 ∼ Mult(softmax(Wgh

(j)
t + bg)).

Beta-pooling and recommendation:

γj ∼ N (tanh(W1fa,b({(h(j)
t ; s

(j)
t )}t) + b1), λ−1

s IK) (4.7)

vj ∼ N (γj, λ
−1
v IK), ui ∼ N (0, λ−1

u IK), Rij ∼ N (uTi vj,C
−1
ij ).

Note that each column of the weights and biases in W+ is drawn fromN (0, λ−1
w IKW )

or N (0, λ−1
w IK). In the generative process above, the input gate hit−1

(j)
and the

forget gate hft−1

(j)
can be drawn as described in Section 4.2.2. e′

(j)
t denotes the

corrupted word (with the embedding x
′(j)
t ) and e

(j)
t denotes the original word (with

the embedding x
(j)
t ). λw, λu, λs, and λv are hyperparameters and Cij is a confidence

parameter (Cij = α if Rij = 1 and Cij = β otherwise). Note that if λs goes to

infinity, the Gaussian distribution (e.g., in Equation (4.6)) will become a Dirac delta

distribution centered at the mean. The compression and decompression act like

a bottleneck between two Bayesian RRNs. The purpose is to reduce overfitting,

provide necessary nonlinear transformation, and perform dimensionality reduction to

obtain a more compact final representation γj for CF. The graphical model for an

example CRAE where Tj = 2 for all j is shown in Figure 4.6(left). fa,b({(h(j)
t ; s

(j)
t )}t)

in Equation (4.7) is the result of beta-pooling with hyperparameters a and b. If we

denote the cumulative distribution function of the beta distribution as F (x; a, b),

φ
(j)
t = (h

(j)
t ; s

(j)
t ) for t = 1, . . . , Tj, and φ

(j)
t = (h

(j)
t+1; s

(j)
t+1) for t = Tj + 1, . . . , 2Tj,

then we have

fa,b({(h(j)
t ; s

(j)
t )}t) =

2Tj∑
t=1

(F (
t

2Tj
, a, b)− F (

t− 1

2Tj
, a, b))φt.

From the generative process, we can see that both CRAE and CDL are Bayesian

deep learning (BDL) models (as described in [128]) with a perception component

(DRAE in CRAE) and a task-specific component.
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Figure 4.6: On the left is the graphical model for an example CRAE
where Tj = 2 for all j. To prevent clutter, the hyperparameters for
beta-pooling, all weights, biases, and links between ht and γ are
omitted. On the right is the graphical model for the degenerated
CRAE. An example recurrent autoencoder with Tj = 3 is shown. ‘〈?〉’ is
the 〈wildcard〉 and ‘$’ marks the end of a sentence. E′ and E are used in

place of [e
′(j)
t ]

Tj
t=1 and [e

(j)
t ]

Tj
t=1 respectively.

Learning

According to the CRAE model above, all parameters like h
(j)
t and vj can be

treated as random variables so that a full Bayesian treatment such as methods based

on variational approximation can be used. However, due to the extreme nonlinearity

and the CF setting, this kind of treatment is non-trivial. Besides, with CDL [127] and

CTR [117] as our primary baselines, it would be fairer to use maximum a posteriori

(MAP) estimates, which is what CDL and CTR do.

End-to-end joint learning: Maximization of the posterior probability is equiv-

alent to maximizing the joint log-likelihood of {ui}, {vj}, W+, {θj}, {γj}, {e
(j)
t },

{e′(j)t }, {h+
t

(j)}, {s(j)
t }, and R given λu, λv, λw, and λs:

L = log p(DRAE|λs, λw)− λu
2

∑
i

‖ui‖2
2 −

λv
2

∑
j

‖vj − γj‖2
2

−
∑
i,j

Cij

2
(Rij − uTi vj)

2 − λs
2

∑
j

‖ tanh(W1fa,b({(h(j)
t ; s

(j)
t )}t) + b1)− γj‖2

2,

where log p(DRAE|λs, λw) corresponds to the prior and likelihood terms for DRAE

(including the encoding, compression, decompression, and decoding in Section 4.2.2)

involving W+, {θj}, {e(j)
t }, {e

′(j)
t }, {h+

t
(j)}, and {s(j)

t }. For simplicity and computa-

tional efficiency, we can fix the hyperparameters of beta-pooling so that Beta(a, b)

peaks slightly to the left of x = 0.5 (e.g., a = 9.8 × 107, b = 1 × 108), which

leads to γj = tanh(θj). Further, if λs approaches infinity, the terms with λs in

log p(DRAE|λs, λw) will vanish and γj will become tanh(W1(h
(j)
Tj
, s

(j)
Tj

) + b1). Fig-

ure 4.6(right) shows the graphical model of a degenerated CRAE when λs approaches
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positive infinity and b > a (with very large a and b). Learning this degenerated

version of CRAE is equivalent to jointly training a wildcard denoising RRN and

an encoding RRN coupled with the rating matrix. If λv � 1, CRAE will further

degenerate to a two-step model where the representation θj learned by the DRAE

is directly used for CF. On the contrary if λv � 1, the decoder RRN essentially

vanishes. Both extreme cases can greatly degrade the predictive performance, as

shown in the experiments.

Robust nonlinearity on distributions: Different from [123, 127], nonlinear

transformation is performed after adding the noise with precision λs (e.g. a
(j)
t

in Equation (4.3)). In this case, the input of the nonlinear transformation is a

distribution rather than a deterministic value, making the nonlinearity more robust

than in [123,127] and leading to more efficient and direct learning algorithms than

CDL.

Consider a univariate Gaussian distribution N (x|µ, λ−1
s ) and the sigmoid function

σ(x) = 1
1+exp(−x)

, the expectation:

E(x) =

∫
N (x|µ, λ−1

s )σ(x)dx = σ(κ(λs)µ), (4.8)

Equation (4.8) holds because the convolution of a sigmoid function with a Gaussian

distribution can be approximated by another sigmoid function. Similarly, we can

approximate σ(x)2 with σ(ρ1(x+ ρ0)), where ρ1 = 4− 2
√

2 and ρ0 = − log(
√

2 + 1).

Hence the variance

D(x) ≈
∫
N (x|µ, λ−1

s ) ◦ Φ(ξρ1(x+ ρ0))dx− E(x)2 = σ(
ρ1(µ+ ρ0)

(1 + ξ2ρ2
1λ
−1
s )1/2

)− E(x)2 ≈ λ−1
s ,

(4.9)

where we use λ−1
s to approximate D(x) for computational efficiency. Using Equation

(4.8) and (B.3), the Gaussian distribution in Equation (4.4) can be computed as:

N (σ(hft−1)� st−1 + σ(hit−1)� σ(at−1), λ−1
s IKW )

≈ N (σ(κ(λs)h
f

t−1)� st−1 + σ(κ(λs)h
i

t−1)� σ(κ(λs)at−1), λ−1
s IKW ), (4.10)

where the superscript (j) is dropped. We use overlines (e.g., at−1 = Yext−1 +

Weht−1 + be) to denote the mean of the distribution from which a hidden variable is

drawn. By applying Equation (4.10) recursively, we can compute st for any t. Similar

approximation is used for tanh(x) in Equation (4.5) since tanh(x) = 2σ(2x)−1. This

way the feedforward computation of DRAE would be seamlessly chained together,
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leading to more efficient learning algorithms than the layer-wise algorithms in

[123,127].

Learning parameters: To learn ui and vj , block coordinate ascent can be used.

Given the current W+, we can compute γ as γ = tanh(W1fa,b({(h(j)
t ; s

(j)
t )}t) + b1)

and get the following update rules:

ui ← (VCiV
T + λuIK)−1VCiRi

vj ← (UCiU
T + λvIK)−1(UCjRj + λv tanh(W1fa,b({(h(j)

t ; s
(j)
t )}t) + b1)T ),

where U = (ui)
I
i=1, V = (vj)

J
j=1, Ci = diag(Ci1, . . . ,CiJ) is a diagonal matrix, and

Ri = (Ri1, . . . ,RiJ)T is a column vector containing all the ratings of user i.

Given U and V, W+ can be learned using the back-propagation algorithm

according to Equation (4.8)-(4.10) and the generative process in Section 4.2.2.

Alternating the update of U, V, and W+ gives a local optimum of L . After U and

V are learned, we can predict the ratings as Rij = uTi vj.

4.2.3 Experiments

In this section, we report some experiments on real-world datasets from different

domains to evaluate the capabilities of recommendation and automatic generation of

missing sequences.

Datasets

We use two datasets from different real-world domains. CiteULike is from [117]

with 5,551 users and 16,980 items (articles with text). Netflix consists of 407,261

users, 9,228 movies, and 15,348,808 ratings after removing users with less than

3 positive ratings (following [127], ratings larger than 3 are regarded as positive

ratings).

Evaluation Schemes

Recommendation: For the recommendation task, similar to [120,127], P items

associated with each user are randomly selected to form the training set and the

rest is used as the test set. We evaluate the models when the ratings are in different
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Figure 4.7: Performance comparison of CRAE, CDL, CTR, DeepMusic,
CMF, and SVDFeature based on recall@M for datasets CiteULike and
Netflix. P is varied from 1 to 5 in the first two figures.

degrees of density (P ∈ {1, 2, . . . , 5}). For each value of P , we repeat the evaluation

five times with different training sets and report the average performance.

Following [117,120], we use recall as the performance measure since the ratings

are in the form of implicit feedback [60, 96]. Specifically, a zero entry may be due

to the fact that the user is not interested in the item, or that the user is not aware

of its existence. Thus precision is not a suitable performance measure. We sort the

predicted ratings of the candidate items and recommend the top M items for the

target user. The recall@M for each user is then defined as:

recall@M =
# items that the user likes among the top M

# items that the user likes
.

The average recall over all users is reported.

We also use another evaluation metric, mean average precision (mAP), in the

experiments. Exactly the same as [88], the cutoff point is set at 500 for each user.

Sequence generation on the fly: For the sequence generation task, we set

P = 5. In terms of content information (e.g., movie plots), we randomly select 80%

of the items to include their content in the training set. The trained models are then

used to predict (generate) the content sequences for the other 20% items. The BLEU

score [89] is used to evaluate the quality of generation. To compute the BLEU score

in CiteULike we use the titles as training sentences (sequences). Both the titles and

sentences in the abstracts of the articles (items) are used as reference sentences. For

Netflix, the first sentences of the plots are used as training sentences. The movie

names and sentences in the plots are used as reference sentences. A higher BLEU

score indicates higher quality of sequence generation. Since CDL, CTR, and PMF

cannot generate sequences directly, a nearest neighborhood based approach is used

with the resulting vj . Note that this task is extremely difficult because the sequences

of the test set are unknown during both the training and testing phases. For this

reason, this task is impossible for existing machine translation models like [29, 110].
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Baselines and Experimental Settings

The models for comparison are listed as follows:

• CMF: Collective Matrix Factorization [107] is a model incorporating different

sources of information by simultaneously factorizing multiple matrices.

• SVDFeature: SVDFeature [28] is a model for feature-based collaborative

filtering. In this section we use the bag-of-words as raw features to feed into

SVDFeature.

• DeepMusic: DeepMusic [88] is a feedforward model for music recommendation

mentioned in Section 4.2.1. We use the best performing variant as our baseline.

• CTR: Collaborative Topic Regression [117] is a model performing topic mod-

eling and collaborative filtering simultaneously as mentioned in the previous

section.

• CDL: Collaborative Deep Learning (CDL) [127] is proposed as a probabilistic

feedforward model for joint learning of a probabilistic SDAE [114] and CF.

• CRAE: Collaborative Recurrent Autoencoder is our proposed recurrent model.

It jointly performs collaborative filtering and learns the generation of content

(sequences).

In the experiments, we use 5-fold cross validation to find the optimal hyperpa-

rameters for CRAE and the baselines. For CRAE, we set α = 1, β = 0.01, K = 50,

KW = 100. The wildcard denoising rate is set to 0.4.

Quantitative Comparison

Recommendation: The first two plots of Figure 4.7 show the recall@M for the

two datasets when P is varied from 1 to 5. As we can see, CTR outperforms the

other baselines except for CDL. Note that as previously mentioned, in both datasets

DeepMusic suffers badly from overfitting when the rating matrix is extremely sparse

(P = 1) and achieves comparable performance with CTR when the rating matrix

is dense (P = 5). CDL as the strongest baseline consistently outperforms other

baselines. By jointly learning the order-aware generation of content (sequences) and

performing collaborative filtering, CRAE is able to outperform all the baselines by

a margin of 0.7% ∼ 1.9% (a relative boost of 2.0% ∼ 16.7%) in CiteULike and

3.5% ∼ 6.0% (a relative boost of 5.7% ∼ 22.5%) in Netflix. Note that since the

standard deviation is minimal (3.38× 10−5 ∼ 2.56× 10−3), it is not included in the

figures and tables to avoid clutter.
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Figure 4.8: The shape of the beta distribution for different a and b
(corresponding to Table 4.6).

The last two plots of Figure 4.7 show the recall@M for CiteULike and Netflix

when M varies from 50 to 300 and P = 1. As shown in the plots, the performance

of DeepMusic, CMF, and SVDFeature is similar in this setting. Again CRAE is able

to outperform the baselines by a large margin and the margin gets larger with the

increase of M .

As shown in Figure 4.8 and Table 4.6, we also investigate the effect of a and b in

beta-pooling and find that in DRAE: (1) temporal average pooling performs poorly

(a = b = 1); (2) most information concentrates near the bottleneck; (3) the right of

the bottleneck contains more information than the left.

As another evaluation metric, Table 4.7 compares different models based on mAP.

As we can see, compared with CDL, CRAE can provide a relative boost of 35% and

10% for CiteULike and Netflix, respectively. In terms of time cost, CDL needs 200

epochs (40s/epoch) while CRAE needs about 80 epochs (150s/epoch) for optimal

performance.

Sequence generation on the fly: To evaluate the ability of sequence generation,

we compute the BLEU score of the sequences (titles for CiteULike and plots for

Netflix ) generated by different models. As mentioned in Section 4.2.3, this task is

impossible for existing machine translation models like [29,110] due to the lack of

source sequences. As we can see in Table 4.8, CRAE achieves a BLEU score of 46.60

for CiteULike and 48.69 for Netflix, which is much higher than CDL, CTR and PMF.

Incorporating the content information when learning user and item latent vectors,

CTR is able to outperform other baselines and CRAE can further boost the BLEU

score by sophisticatedly and jointly modeling the generation of sequences and ratings.

Note that although CDL is able to outperform other baselines in the recommendation

task, it performs poorly when generating sequences on the fly, which demonstrates

the importance of modeling each sequence recurrently as a whole rather than as

separate words.
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Table 4.6: Recall@300 for beta-pooling with different hyperparameters

a 31112 311 1 1 0.4 10 400 40000

b 40000 400 10 1 0.4 1 311 31112

Recall 12.17 12.54 10.48 11.62 11.08 10.72 12.71 12.22

Table 4.7: mAP for two datasets

CRAE CDL CTR DeepMusic CMF SVDFeature

CiteULike 0.0123 0.0091 0.0071 0.0058 0.0061 0.0056

Netflix 0.0301 0.0275 0.0211 0.0156 0.0144 0.0173

Table 4.8: BLEU score for two datasets

CRAE CDL CTR PMF

CiteULike 46.60 21.14 31.47 17.85

Netflix 48.69 6.90 17.17 11.74

Qualitative Comparison

In order to gain a better insight into CRAE, we train CRAE and CDL in the

sparsest setting (P = 1) with dataset CiteULike and use them to recommend articles

for two example users. The corresponding articles for the target users in the training

set and the top 10 recommended articles are shown in Table 4.9. Note that in the

sparsest setting the recommendation task is extremely challenging since there is only

one single article for each user in the training set.

As we can see, CRAE successfully identified User I as a researcher working on

information retrieval with interest in user modeling using user feedback.

Consequently, CRAE achieves a high precision of 60% by focusing its recommenda-

tions on articles about information retrieval, user modeling, and relevance feedback.

On the other hand, the topics of articles recommended by CDL span from visual

tracking (Article 4) to bioinformatics (Article 3) and programming language

(Article 8). One possible reason is that CDL uses the bag-of-words representation

as input and consider each word separately without taking into account the local

context of words. For example, looking into CDL’s recommendations more closely,

we can find that Article 3 (on bioinformatics) and Article 4 (on visual tracking) are

actually irrelevant to the training article ‘Bayesian adaptive user profiling with

explicit and implicit feedback’. CDL probably recommends Article 3 because the

word ‘profiles’ in the title overlaps with the article in the training set. The same

thing happens for Article 4 with a word ‘Bayesian’. With the recurrent learning

in CRAE, a sequence is modeled as a whole instead of separate words. As a result,

with the local context of each word taken into consideration, CRAE can recognize
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the whole phrase ‘user profiling’, rather than ‘user’ or ‘profiling’, as a theme of the

article.

A similar phenomenon is found for User II with the article ‘Taxonomy of trust:

categorizing P2P reputation systems’. CDL’s recommendations bet on the single

word ‘systems’ while CRAE identified the article to be on trust propagation from

the words ‘trust’ and ‘P2P’. In the end, CRAE achieves a precision of 30% and

CDL’s precision is 10%.
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Table 4.9: Qualitative comparison between CRAE and CDL

the rated article Bayesian adaptive user profiling with explicit and implicit feedback

User I (CRAE) in user’s lib?

top 10 articles

1. Incorporating user search behavior into relevance feedback no
2. Query chains: learning to rank from implicit feedback yes
3. Implicit feedback for inferring user preference: a bibliography yes
4. Modeling user rating profiles for collaborative filtering no
5. Improving retrieval performance by relevance feedback no
6. Language models for relevance feedback no
7. Context-sensitive information retrieval using implicit feedback yes
8. Implicit user modeling for personalized search yes
9. Model-based feedback in the language modeling approach to information retrieval yes
10. User language model for collaborative personalized search yes
User I (CDL) in user’s lib?

top 10 articles

1. Implicit feedback for inferring user preference: a bibliography yes
2. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales no
3. A knowledge-based approach for interpreting genome-wide expression profiles no
4. A tutorial on particle filters for online non-linear/non-gaussian Bayesian tracking no
5. Query chains: learning to rank from implicit feedback yes
6. Mapreduce: simplified data processing on large clusters no
7. Correlating user profiles from multiple folksonomies no
8. Evolving object-oriented designs with refactorings no
9. Trapping of neutral sodium atoms with radiation pressure no
10. A scheme for efficient quantum computation with linear optics no

the rated article Taxonomy of trust: categorizing P2P reputation systems

User II (CRAE) in user’s lib?

top 10 articles

1. Effects of positive reputation systems no
2. Trust in recommender systems yes
3. trust metrics in recommender systems no
4. The Structure of Collaborative Tagging Systems no
5. Effects of energy policies on industry expansion in renewable energy no
6. Limited reputation sharing in P2P systems yes
7. Survey of wireless indoor positioning techniques and systems no
8. Design coordination in distributed environments using virtual reality systems no
9. Propagation of trust and distrust yes
10. Physiological measures of presence in stressful virtual environments no
User II (CDL) in user’s lib?

top 10 articles

1. Trust in recommender systems yes
2. Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead no
3. A taxonomy of workflow management systems for grid computing no
4. Usage patterns of collaborative tagging systems no
5. Semantic blogging and decentralized knowledge management no
6. Flickr tag recommendation based on collective knowledge no
7. Delivering real-world ubiquitous location systems no
8. Shilling recommender systems for fun and profit no
9. Privacy risks in recommender systems no
10. Probabilistic reasoning in intelligent systems networks of plausible inference no

59



Section 4.2 Hao Wang

4.2.4 Conclusion and Future Work

We develop a collaborative recurrent autoencoder which can sophisticatedly model

the generation of item sequences while extracting the implicit relationship between

items (and users). We design a new pooling scheme for pooling variable-length

sequences and propose a wildcard denoising scheme to effectively avoid overfitting.

To the best of our knowledge, CRAE is the first model to bridge the gap between

RNN and CF. Extensive experiments show that CRAE can significantly outperform

the state-of-the-art methods on both the recommendation and sequence generation

tasks.

With its Bayesian nature, CRAE can easily be generalized to seamlessly in-

corporate auxiliary information (e.g., the citation network for CiteULike and the

co-director network for Netflix ) for further accuracy boost. Moreover, multiple

Bayesian recurrent layers may be stacked together to increase its representation

power. Besides making recommendations and guessing sequences on the fly, the

wildcard denoising recurrent autoencoder also has potential to solve other challenging

problems such as recovering the blurred words in ancient documents.
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Chapter 5

Relational Stacked Denoising

Autoencoders

In this chapter, we introduce relational stacked denoising autoencoders (RSDAE)

as a deep relational topic model for unsupervised relational representation learning,

with tag recommendation as an example to utilized the learned representation.

We will start with the motivation and importance of tag recommendation and

relational representation learning, followed by the formulation, learning algorithms,

and empirical results of our proposed RSDAE.

5.1 Introduction

Due to the abundance of online resources like articles, movies, and music, tagging

systems [140] have become increasingly important for organizing and indexing them.

For example, CiteULike1 uses tags to help categorize millions of articles online and

Flickr2 allows users to use tags to organize their photos. However, it is often not

easy to compose a set of words appropriate for the resources. Besides, the large

variety in phrasing styles of the users can potentially make the tagging information

inconsistent and idiosyncratic. With such technical challenges, research in tag

recommendation (TR) [45, 129] has gained in popularity over the past few years. An

accurate tag recommendation system not only can save the pain of users searching

for candidate tags on the tip of their tongues, but can also make the tags used more

1http://www.citeulike.org
2http://www.flickr.com
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consistent. Consequently, both the user experience and recommendation accuracy

can be improved dramatically.

Tag recommendation methods can roughly be categorized into three classes [129]:

content-based methods, co-occurrence based methods, and hybrid methods. Content-

based methods [23, 24, 105] utilize only the content information (e.g., abstracts of

articles, image pixels, and music content) for tag recommendation. Co-occurrence

based methods [38,97,135] are similar to collaborative filtering (CF) methods [77].

The co-occurrence of tags among items, usually represented as an tag-item matrix,

is used for tagging. The third class of methods [7, 22, 117, 136, 137, 144], also the

most popular and effective ones, consists of hybrid methods. They make use of

both tagging (co-occurrence) information (the tag-item matrix) and item content

information for recommendation.

In hybrid methods, learning of item representations (also called item latent factors

in some models) is crucial for the recommendation accuracy especially when the

tag-item matrix is extremely sparse. Recently, models like collaborative topic regres-

sion (CTR) [117] and its variants [94, 120] have been proposed and adapted for tag

recommendation to achieve promising performance. These models use latent Dirichlet

allocation (LDA) [15] as the key component for learning item representations and

use probabilistic matrix factorization (PMF) [103] to process the co-occurrence ma-

trix (tag-item matrix). However, when using LDA, the resulting item representations

tend to be quite sparse. Consequently, more dimensions may be needed for the

representations to be effective. Unfortunately PMF with the low-rank assumption

usually works with quite a small number of latent dimensions, which is not in line

with the nature of LDA (or CTR). On the other hand, deep learning models like

stacked denoising autoencoder (SDAE) [114] and convolutional neural networks [69]

recently show great potential for learning effective and compact representations and

deliver state-of-the-art performance in computer vision [130] and natural language

processing [64, 102] applications. Intuitively, the effectiveness and compactness of

deep learning models like SDAE seem to fit PMF perfectly and can potentially

lead to significant boost of recommendation performance. Besides, since relational

data exist as an auxiliary data source in many applications (e.g., natural language

processing, computational biology), it is desirable to incorporate such data into

tag recommendation models. For example, when recommending tags for articles

in CiteULike, the citation relations between articles [115, 121] may provide very

useful information. However, incorporating relational information into deep neural
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network (DNN) models like SDAE is non-trivial since with the relational data, the

samples are no longer i.i.d.3, which is the assumption underlying DNN models.

In this chapter, we propose novel methods to address the above challenges. The

main contributions related to RSDAE are summarized as follows:

• We adapt SDAE and use it in conjunction with PMF (or a simplified version

of CTR) to significantly boost the performance of tag recommendation.

• To satisfy the need for relational deep learning, we extend the Bayesian SDAE

and propose a probabilistic relational model called relational SDAE (RSDAE)

to integrate deep representation learning and relational learning in a principled

way. Besides, RSDAE can be naturally extended to handle multi-relational

data.

• Extensive experiments on datasets from different domains show that our models

outperform the state of the art.

5.2 Relational Stacked Denoising Autoencoders

Assume we have a set of items (articles or movies) Xc to be tagged, with

XT
c,j∗ ∈ RB denoting the content (attributes) of item j. In the case of tagging articles

(papers) in CiteULike, the items are papers, and the content information can be

the bag-of-words representation of paper abstracts. Assume we have a set of I tags

{t1, t2, · · · , tI} as candidates to be recommended to tag each item. Then a tag-item

matrix R can be used to represent the tagging information for all the items. Each

matrix entry Rij is a binary variable, where Rij = 1 means that tag ti is associated

with item j and Rij = 0 otherwise. Tag recommendation is to predict the missing

values in R∗j = [R1j,R2j, · · · ,RIj]
T (i.e., recommend tags to items). Besides, we

use IK to denote a K-dimensional identity matrix and S = [s1, s2, · · · , sJ ] to denote

the relational latent matrix with sj representing the relational properties of item j.

Note that although we focus on tag recommendation for articles and movies in this

chapter, our proposed models are flexible enough to be used for other applications

such as image and video tagging.

From the perspective of SDAE, the J-by-B matrix Xc represents the clean input

to the SDAE and the noise-corrupted matrix of the same size is denoted by X0.

Besides, we denote the output of layer l of the SDAE, a J-by-Kl matrix, by Xl. Row

j of Xl is denoted by Xl,j∗, Wl and bl are the weight matrix and bias vector of layer

3See 4.1.2 for some notes on the i.i.d. and non-i.i.d. settings.
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Figure 5.1: Graphical model of RSDAE for L = 4. λs is not shown here
to prevent clutter.

l, Wl,∗n denotes column n of Wl, and L is the number of layers. As a shorthand, we

refer to the collection of all layers of weight matrices and biases as W+. Note that

in our models an L/2-layer SDAE corresponds to an L-layer network.

Following the notation above and based on the Bayesian SDAE introduced in

Section 4.1.2, we will now formulate the RSDAE model.

5.2.1 Model Formulation

We formulate RSDAE as a novel probabilistic model which can seamlessly inte-

grate layered representation learning and the relational information available. This

way our model can learn simultaneously the feature representation from the content

information and the relation between items. The graphical model of RSDAE is

shown in Figure 5.1 and the generative process is listed as follows:

1. Draw the relational latent matrix S from a matrix variate normal distribu-

tion [44]:

S ∼ NK,J(0, IK ⊗ (λlLa)
−1). (5.1)

2. For layer l of the SDAE where l = 1, 2, . . . , L
2
− 1,

(a) For each column n of the weight matrix Wl, draw Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).
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(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).

3. For layer L
2

of the SDAE network, draw the representation vector for item j

from the product of two Gaussians (PoG) [36]:

XL
2
,j∗ ∼ PoG(σ(XL

2
−1,j∗Wl + bl), s

T
j , λ

−1
s IK , λ

−1
r IK).

4. For layer l of the SDAE network where l = L
2

+ 1, L
2

+ 2, . . . , L,

(a) For each column n of the weight matrix Wl, draw Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).

5. For each item j, draw a clean input

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IB).

Here K = KL
2

is the dimensionality of the learned representation vector for each

item, S denotes the K×J relational latent matrix in which column j is the relational

latent vector sj for item j. Note that NK,J(0, IK ⊗ (λlLa)
−1) in (1) is a matrix

variate normal distribution defined as [44]:

p(S) = NK,J(0, IK ⊗ (λlLa)
−1)

=
exp{tr[−λl

2
SLaS

T ]}
(2π)JK/2|IK |J/2|λlLa|−K/2

, (5.2)

where the operator ⊗ denotes the Kronecker product of two matrices [44], tr(·)
denotes the trace of a matrix, and La is the Laplacian matrix incorporating the

relational information. La = D−A, where D is a diagonal matrix whose diagonal

elements Dii =
∑

j Aij and A is the adjacency matrix representing the relational

information with binary entries indicating the links (or relations) between items.

Ajj′ = 1 indicates that there is a link between item j and item j′ and Ajj′ = 0

otherwise. PoG(σ(XL
2
−1,j∗Wl + bl), s

T
j , λ

−1
s IK , λ

−1
r IK) denotes the product of the

Gaussian N (σ(XL
2
−1,j∗Wl + bl), λ

−1
s IK) and the Gaussian N (sTj , λ

−1
r IK), which is

also a Gaussian [36].
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According to the generative process above, maximizing the posterior probability

is equivalent to maximizing the joint log-likelihood of {Xl}, Xc, S, {Wl}, and {bl}
given λs, λw, λl, λr, and λn:

L =− λl
2

tr(SLaS
T )− λr

2

∑
j

‖(sTj −XL
2
,j∗)‖2

2

− λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖2
2

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖2
2.

Similar to the generalized SDAE, taking λs to infinity, the joint log-likelihood

becomes:

L =− λl
2

tr(SLaS
T )− λr

2

∑
j

‖(sTj −XL
2
,j∗)‖2

2

− λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖2
2, (5.3)

where Xl,j∗ = σ(Xl−1,j∗Wl+bl). Note that the first term −λl
2

tr(SLaS
T ) corresponds

to log p(S) in the matrix variate distribution in Equation (A). Besides, by simple

manipulation, we have tr(SLaS
T ) =

K∑
k=1

STk∗LaSk∗ where Sk∗ denotes the kth row of

S. As we can see, maximizing −λl
2

tr(STLaS) is equivalent to making sj closer to sj′

if item j and item j′ are linked (namely Ajj′ = 1).

5.2.2 Learning Relational Representation

We now derive an EM-style algorithm for maximum a posteriori (MAP) estima-

tion.

In terms of the relational latent matrix S, we first fix all rows of S except the kth

one Sk∗ and then update Sk∗. Specifically, we take the gradient of L with respect
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to Sk∗, set it to 0, and get the following linear system:

(λlLa + λrI)Sk∗ = λrX
T
L
2
,∗k. (5.4)

A naive approach is to solve the linear system by setting Sk∗ = λr(λlLa+λrIJ)−1XT
L
2
,∗k.

Unfortunately, the complexity is O(J3) for one single update. Similar to [76], the

steepest descent method [106] is used to iteratively update Sk∗:

Sk∗(t+ 1)← Sk∗(t) + δ(t)r(t)

r(t)← λrX
T
L
2
,∗k − (λlLa + λrIJ)Sk∗(t)

δ(t)← r(t)T r(t)

r(t)T (λlLa + λrIJ)r(t)
.

As discussed in [76], the use of steepest descent method dramatically reduces the

computation cost in each iteration from O(J3) to O(J).

Given S, we can learn Wl and bl for each layer using the back-propagation

algorithm. By alternating the update of S, Wl, and bl, a local optimum for L can

be found. Also, techniques such as including a momentum term may help to avoid

being trapped in a local optimum.

5.2.3 Tag Recommendation

After the representation for each item is learned, we can use a simplified version

of CTR [117] to learn the latent vectors ui for tag i and vj for item j. Similar

to [117], predicted ratings Rij can be computed as the inner product of ui and vj.

Essentially we will be maximizing the following objective function:

L =− λu
2

∑
i

‖ui‖2
2 −

λv
2

∑
j

‖vj −XT
L
2
,j∗‖

2
2

−
∑
i,j

cij
2

(Rij − uTi vj)
2,

where λu and λv are hyperparameters. cij is set to 1 for the existing ratings and 0.01

for the missing entries.
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5.3 Experiments

5.3.1 Datasets

For our experiments, we use three real-world datasets with two [117,120] from

CiteULike4 and one from MovieLens5. There are 7386 tags, 16980 articles (items),

and 204987 tag-item pairs in the first dataset, citeulike-a. For the second one,

citeulike-t, the numbers are 8311, 25975, and 134860. The third dataset, movielens-

plot, originally from MovieLens-10M and enriched by us, contains 2988 tags, 7261

movies (items), and 51301 tag-item pairs.

The text information (item content) extracted from the titles and abstracts of the

articles and from the plots of movies has been preprocessed using the same procedure

as that in [117]. The sizes of the vocabulary are 8000, 20000, and 20000 for the three

datasets respectively.

Regarding the relational information, we use the citation networks for citeulike-a

and citeulike-t. For movielens-plot we have two types of relational information (two

graphs): co-staff graph and co-genre graph. Existence of an edge in the co-staff graph

means that the two connected movies share more than one staff member and an edge

in the co-genre graph means that the two movies have identical genre combination.

The numbers of edges in the citation networks are 44709 and 32665 for citeulike-a

and citeulike-t, respectively. For the co-staff graph in movielens-plot there are 118126

edges in total and that number is 425495 for the co-genre graph. Note that our

RSDAE model can support multi-relational data (like movielens-plot), though we

present the uni-relational setting in the previous section for simplicity.

5.3.2 Evaluation Scheme

In each dataset, similar to [120], P items associated with each tag are randomly

selected to form the training set and all the rest of the dataset is used as the test set.

P is set to 1 and 10, respectively, to evaluate and compare the models under both

sparse and dense settings in the experiments. For each value of P , the evaluation is

repeated five times with different randomly selected training sets and the average

performance is reported.

4CiteULike allows users to create their own collections of articles. There are abstract, title, and
tags for each article.

5http://www.grouplens.org/datasets
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Following [94,117,120], we use recall as the performance measure since the rating

information appears in the form of implicit feedback [60, 96], which means a zero

entry may be due to irrelevance between the tag and the item or the user’s ignorance

of the tags when tagging items. As such, precision is not suitable as a performance

measure. Like most recommender systems, we sort the predicted ratings of the

candidate tags and recommend the top M tags to the target item. The recall@M

for each item is defined as:

recall@M =
number of tags the item is associated with in top M

total number of tags the item is associated with
.

The final reported result is the average recall over all items.

5.3.3 Experimental Settings

Experiments in [120] have demonstrated that CTR and CTR-SR clearly out-

perform state-of-the-art content-based methods, co-occurrence based methods, and

other hybrid methods. Due to space constraints, in the experiments we use only

CTR [117] and CTR-SR [120] as baselines. CTR is a model combining LDA and

PMF for recommendation. CTR-SR is a powerful extension of CTR in a sense that

it seamlessly incorporates relational data into the model. We fix K = 50 and use

a validation set to find the optimal hyperparameters for CTR and CTR-SR. For

SDAE and RSDAE, tag recommendation can be divided into two steps: learning

relational representation and PMF. We set λs to infinity for efficient computation

and fair comparison with SDAE. Furthermore, since there are only four terms in

Equation (5.3) we can directly fix λr = 1. The remaining hyperparameters of the

first step (λl, λw, and λn) are found by grid search (λw is the hyperparameter for

weight decay and can be ignored if we choose not to use it) and hyperparameters of

the second step are fixed to values the same as those of CTR. For the grid search,

we split the training data and 5-fold cross validation is used.

On the SDAE side, a masking noise with a noise level of 0.3 is added to the

clean input Xc to obtain the corrupted input X0. We use a fixed dropout rate of

0.1 [51, 116] to achieve adaptive regularization. For the network architecture, we set

the number of non-bottleneck hidden units Kl to 200. K0 and KL are set to B, the

number of words in the dictionary. KL/2 is equal to K, the number of latent factors in

PMF. For example, a 2-layer SDAE has an architecture of ‘20000-200-50-200-20000’

for the dataset movielens-plot.

69



Section 5.3 Hao Wang

50 100 150 200 250 300

0.15

0.2

0.25

0.3

0.35

M

R
ec

al
l

 

 
RSDAE
SDAE
CTR−SR
CTR

50 100 150 200 250 300

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M

R
ec

al
l

 

 
RSDAE
SDAE
CTR−SR
CTR

Figure 5.2: Performance comparison of all methods based on recall@M for
citeulike-a when P = 1 (left) and P = 10 (right).
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Figure 5.3: Performance comparison of all methods based on recall@M for
citeulike-t when P = 1 (left) and P = 10 (right).

5.3.4 Performance Evaluation

Figures 5.2, 5.3, and 5.4 show the recall@M for all three datasets in the sparse and

dense settings, with M ranging from 50 to 300. As we can see, CTR-SR outperforms

CTR by incorporating relational data into the model. What is surprising is that

even without using any relational information, SDAE in conjunction with PMF still

outperforms CTR-SR which utilizes abundant relational information, especially for

citeulike-t as shown in Figure 5.3. Furthermore, RSDAE can achieve even higher

recall by jointly performing representation learning and relational learning in a

principled way.

Figure 5.5(left) shows the recall@M of RSDAE for citeulike-t in the sparse setting

when L = 2, 4, 6 (corresponding to 1-layer, 2-layer, and 3-layer RSDAE, respectively).

As we can see, the recall increases with the number of layers. Similar phenomena can

be observed for other datasets which are omitted here due to space constraints. Note

that the standard deviations are negligible in all experiments (from 4.56× 10−5 to
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Figure 5.4: Performance comparison of all methods based on recall@M for
movielens-plot when P = 1 (left) and P = 10 (right).
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Figure 5.5: The effect of the number of layers in RSDAE (left) and the
effect of λn in RSDAE (right).

3.57× 10−3). To prevent clutter, the standard deviations are not separately reported

for all figures in this chapter.

5.3.5 Sensitivity to Hyperparameters

Figure 5.5(right) shows how recall@M is affected by the choice of hyperparameter

λn for movielens-plot in the sparse setting when λr = 1 and λl = 100. As shown

in the figure, recall@M increases with λn initially and gradually decreases at some

point after λn = 1. It is not very sensitive within a wide range of values, especially

after the optimal point. Similar phenomena are observed for other hypeparameters

like λl.
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5.3.6 Case Study

To gain a deeper insight into the difference between SDAE and RSDAE, we

choose one example article from citeulike-a and one example movie from movielens-

plot to conduct a case study. The experiments are conducted in the sparse setting

for citeulike-a and in the dense setting for movielens-plot. We list the top 10

recommended tags provided by SDAE and RSDAE for the target items. Note that

in the sparse setting recommendation is very challenging due to extreme sparsity of

tagging information. As we can see in Table 5.1, the precisions for the target article

are 10% and 60%, respectively. For the target movie the numbers are 30% and 60%.

The huge gap shows that relational information plays a significant role in boosting

the recommendation accuracy for the target items.

Looking into the recommended tag lists and the data more closely, we find that

the example article ‘Mining the Peanut Gallery: Opinion Extraction and Semantic

Classification of Product Reviews’ is a WWW paper about sentiment classification.

As shown in the table, most of the recommended tags provided by SDAE are trivial

or irrelevant while RSDAE can understand the focus of the article a lot better and

achieve a precision up to 60%. Among the six tags correctly predicted by RSDAE,

two of them are related to articles linked to the target article directly. This means

RSDAE is not simply recommending tags associated to linked articles in the citation

network. By jointly performing relational learning and deep representation learning,

these two parts actually benefit from each other and yield additional performance

gain.

A similar phenomenon is observed in the example movie ‘E.T. the Extra-

Terrestrial’ directed by Steven Spielberg. RSDAE correctly recommends three

more tags for the award-winning movie. Among the three, two tags are related

to movies directly linked to the target one. Interestingly, although the remaining

tag ‘Oscar (Best Music - Original Score)’ does not show up in the tag lists of the

linked movies, we find that ‘E.T. the Extra-Terrestrial’ is directly linked to the

movie ‘Raiders of the Lost Ark’ (also directed by Steven Spielberg), which was

once nominated for Oscar’s academy award for best music. These results show that

RSDAE as a relational representation learning model seems to do quite a good job

in predicting award winners as well.

72



S
ection

5.3
H

ao
W

an
g

Table 5.1: Example items (one movie and one article) with recommended tags

Example Article
Title: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews
Top topic 1: language, text, mining, representation, semantic, concepts, words, relations, processing, categories

Top 10 recommended tags

SDAE True tag? RSDAE True tag?
1. instance within labeled concepts no 1. sentiment analysis no
2. consumer yes 2. instance within labeled concepts no
3. sentiment analysis no 3. consumer yes
4. summary no 4. summary no
5. 31july09 no 5. sentiment yes
6. medline no 6. product review mining yes
7. eit2 no 7. sentiment classification yes
8. l2r no 8. 31july09 no
9. exploration no 9. opinion mining yes
10. biomedical no 10. product yes

Example Movie
Title: E.T. the Extra-Terrestrial
Top topic 1: crew, must, on, earth, human, save, ship, rescue, by, find, scientist, planet

Top 10 recommended tags

SDAE True tag? RSDAE True tag?
1. Saturn Award (Best Special Effects) yes 1. Steven Spielberg yes
2. Want no 2. Saturn Award (Best Special Effects) yes
3. Saturn Award (Best Fantasy Film) no 3. Saturn Award (Best Writing) yes
4. Saturn Award (Best Writing) yes 4. Oscar (Best Editing) no
5. Cool but freaky no 5. Want no
6. Saturn Award (Best Director) no 6. Liam Neeson no
7. Oscar (Best Editing) no 7. AFI 100 (Cheers) yes
8. almost favorite no 8. Oscar (Best Sound) yes
9. Steven Spielberg yes 9. Saturn Award (Best Director) no
10. sequel better than original no 10. Oscar (Best Music - Original Score) yes
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5.4 Conclusion

In this chapter we first adapt SDAE to learn deep item representations for

tag recommendation. Furthermore, by extending the Bayesian SDAE, we propose

RSDAE as a novel relational extension for integrating deep representation learning

and relational learning in a principled way. Our model can also be naturally extended

to handle multi-relational data due to its probabilistic nature (see the appendix for

more details). Experiments on real-world datasets from different domains show that

our models are effective and outperform the state of the art. Besides, our framework

is general enough to be adapted for other deep learning models like CNN as well.
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Chapter 6

Relational Deep Learning

In this chapter, we introduce relational deep learning (RDL), a deep latent

variable model for link prediction. We will start with the motivation and importance

of link prediction and social network analysis, followed by the formulation, learning

algorithms, and empirical results of our proposed RDL.

6.1 Introduction

With the rapid growth of social network services (SNS) and other Internet

applications, network data have become very pervasive [131]. For example, there

exist hyperlinks among web pages, social relationships among friends in online social

networks like Facebook, and citations among scientific articles. Link prediction, as

a fundamental task for such network data, can help to recommend relevant pages

for newly created websites, new friends in online social networks, or citations for

newly written articles. Roughly speaking, existing link prediction methods can be

categorized into three classes [40]: link-based methods, attribute-based methods, and

hybrid methods. Link-based methods seek to model the link structures of networks

in a principled way [3, 112], e.g., using latent variable models or linear algebraic

formulations. Attribute-based methods [32] view the link prediction problem as a

supervised classification task where each instance corresponds to a pair of nodes in

the network. Hybrid methods [21, 26] try to jointly model the link structures and

node attributes in an attempt to get the best of both worlds.

Link-based methods, though powerful, account only for the link structures of

networks. They ignore the node attributes which are in fact also useful for link
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prediction [4, 32, 115]. For example, the text and abstracts (text-based attributes) of

scientific articles play a crucial role in determining the links of citation networks, the

similarity and relevance of content in web pages often affect whether they link each

other, and the profile descriptions in online social networks may be the sole source of

information deciding how friends are recommended to new users. On the other hand,

attribute-based methods first extract attribute-based features for pairs of nodes and

pose link prediction as a classification problem. Although attribute-based methods

can take node attributes into account and are easy to implement, they often involve

tedious feature crafting which is very labor intensive. There are models that directly

use the node attributes for link prediction [55], but they fail to make meaningful

prediction with high-dimensional attributes like text data, as mentioned in [21].

On the other hand, by jointly modeling the node attributes and link structures,

hybrid methods can get the best of both worlds and deliver state-of-the-art perfor-

mance. They can fully integrate the node attributes into a principled model without

the need for feature crafting. What’s more, they can even infer the node attributes

according to the link structures. This is impossible for both link-based and attribute-

based methods. Among the hybrid methods, the relational topic model (RTM) [21]

integrates both node attributes and link structures into a principled probabilistic

model and gives very promising accuracy. Subsequently, discriminative RTM [26]

extends RTM by modeling topic interaction and using regularized Bayesian inference

(RegBayes), leading to significant performance boost. However, the representations

(features) that the current hybrid methods learn from the link structures and node

attributes are still not effective enough.

As a separate research direction, recent advances in deep learning show that models

like stacked denoising autoencoders (SDAE) [114] and convolutional neural networks

(CNN) [69] have great potential to learn effective and compact representations in

such fields as computer vision [65] and natural language processing [62,102]. However,

conventional deep learning models often assume i.i.d. input and hence are incapable

of modeling relational data (network data) and performing link prediction. Besides,

the non-probabilistic formulations of deep learning models do not allow them to

integrate relational data in a principled manner and perform Bayesian inference like

RTM variants.

To address the problems, we follow the Bayesian deep learning framework [128]

and devise a hierarchical Bayesian model, called relational deep learning (RDL), to

jointly and deeply model high-dimensional node attributes and link structures with

layers of latent variables. Unfortunately, due to the extreme nonlinearity of RDL,
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standard variational inference is not applicable. We therefore propose to utilize the

product of Gaussians (PoG) structure in RDL to relate the inferences on different

variables and derive a generalized variational inference (GVI) algorithm for learning

the variables and predicting the links. Note that the value of GVI goes beyond RDL

since it can be adapted to seamlessly unify arbitrary types of neural networks and

Bayesian networks (with Bayesian treatment). The main contributions related to

RDL are summarized as follows:

• We devise a hierarchical Bayesian model, RDL, to seamlessly integrate the

node attributes and link structures of network data and perform relational

deep learning.

• Besides the learning algorithm for maximum a posteriori (MAP) estimation, a

generalized variational inference algorithm is derived to handle the multiple

nonlinear transformations, model the uncertainty, and perform joint learning

in RDL.

• Experiments on three real-world datasets show that our model works surpris-

ingly well and significantly outperforms the state of the art.

6.2 Related Work

As mentioned in the previous section, deep learning models have been used for

various applications showing great potential. However, very few attempts have been

made for the link prediction problem, especially for the joint modeling of node

attributes and link structures on network data, which is crucial for link prediction.

To the best of our knowledge, RDL is the first deep learning model that incorporates

the node attributes and link structures into a hierarchical Bayesian model for link

prediction. For completeness, we review some recent work relevant to RDL.

In [141], a deep model is built to solve the relation classification problem in

which the relationships between words in a given sentence are classified. The

approach adopted is essentially a combination of feature engineering and CNN,

which cannot be directly used to handle the link prediction problem in relational

(network) data. [79, 119] deal with the link prediction problem in dynamic/static

networks. However, they only take account of the link structure information of the

networks to predict the future relationship while ignoring the node attributes. Doing

so inevitably harms the predictive performance [21,115]. DeepWalk [91] is another

model that deals with relational data using deep learning models. It uses local

77



Section 6.3 Hao Wang

information obtained from truncated random walks and uses hierarchical softmax to

learn the latent representation for each node by treating the walks as the equivalent

of sentences. [123] uses relational information to construct priors for generating

representations. Although DeepWalk [91] and [123] are relevant to both relational

data and deep learning, they are used for learning the low-dimensional representation

for each node in the network instead of performing link prediction.

6.3 Model Formulation

In this section, we start with defining the notation and problem statement, followed

by the introduction of RDL and then the discussion of two learning algorithms, MAP

estimation and Bayesian treatment, for this model.

The attributes of I nodes are denoted by an I-by-B matrix Xc where B is the

number of attributes (size of vocabulary) for each node. Each row Xc,i∗ is the

bag-of-words representation for node i if each node is a document (article). Wl and

bl are the weight matrix and bias vector, respectively, in layer l. Kl is the number of

hidden units in the l-th layer. K = KL
2

is the dimensionality of item representations.

Wl,∗n denotes column n of Wl and L is the number of layers. For convenience, W+

is used to denote the collection of all layers of weight matrices and biases. Note that

an L/2-layer SDAE corresponds to an L-layer network. li,i′ indicates the existence

of links, where li,i′ = 1 means there is a link between node i and node i′. Similar

to [21], for both methodological and computational reasons, only observed links will

be modeled in RDL (i.e., li,i′ is either 1 or unobserved). The task is to predict a

new node’s (for example, a document which is not in the training set) links to other

nodes given the current link structures and node attributes. Note that the links from

new nodes are not available in the training set. Hence link-based methods are not

applicable in our problem setting.

6.3.1 Relational Deep Learning

Using the Bayesian SDAE (BSDAE) in [123,127] as a building block (Step 1 and

2 below), the generative process of RDL is defined as follows:

1. For each layer l of the BSDAE network,
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Figure 6.1: Graphical model of a 2-layer RDL (L = 4).

(a) For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl−1

).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row i of Xl, draw

Xl,i∗ ∼ N (σ(Xl−1,i∗Wl + bl), λ
−1
s IKl).

2. For each item i, draw a clean input

Xc,i∗ ∼ N (XL,i∗, λ
−1
n IB).

3. For each item i, generate features

φi ∼ h(φi|XT
L
2
,i∗, λp).

4. Draw the parameter η ∼ N (0, λ−1
e IK).

5. For each pair of items (i, i′) with an observed link, draw a binary link indicator

li,i′|φi,φi′ ∼ ψ(·|φi,φi′ ,η).

Here λw, λn, λp, λs, and λe are hyperparameters. Xl,i∗ and φi are latent variables

while η and W+ are parameters. For computational efficiency, we can also take λs

to infinity. h(φi|XT
L
2
,i∗, λp) is a feature generator distribution. For example, it can

be a Gaussian distribution N (XT
L
2
,i∗, λ

−1
p IK) or a Dirichlet distribution Dir(λpX

T
L
2
,i∗).

The link probability function is defined as

ψ(lj,j′ = 1|φi,φi′ ,η) = σ(ηT (φi ◦ φi′)). (6.1)
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The graphical model of RDL is shown in Figure 6.1, where, for notational

simplicity, we omit λs and use φ, φ′, xl, and xc in place of φi, φi′ , XT
l,j∗, and XT

c,j∗,

respectively.

6.3.2 Learning Algorithms

We first derive an algorithm for the MAP estimation of the variables and then

provide the GVI algorithm for the Bayesian treatment of RDL. Note that [123,127]

provide only MAP estimation for BSDAE. Hence efficient Bayesian treatment and

integration with network data are both nontrivial here.

MAP Estimation

We derive below an EM-style algorithm for obtaining the MAP estimates when

the feature generator distribution h(φi|XT
L
2
,i∗, λp) = N (φi|XT

L
2
,i∗, λ

−1
p IK).

Maximizing the posterior probability is equivalent to maximizing the joint log-

likelihood of {Xl}, Xc, {Wl}, {bl}, {φi}, η, and {li,i′} given λp, λe, λw, λs, and

λn:

L =− λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λp
2

∑
i

‖φi −XT
L
2
,i∗‖

2
2 −

λn
2

∑
i

‖XL,i∗ −Xc,i∗‖2
2

− λs
2

∑
l

∑
i

‖σ(Xl−1,i∗Wl + bl)−Xl,i∗‖2
2

− λe
2
‖η‖2

2 +
∑
li,i′=1

log σ(ηT (φi ◦ φi′)). (6.2)

Update rules can be derived based on gradients with respect to different variables.

Another choice of the distribution h(φi|XT
L
2
,i∗, λp) is the Dirichlet distribution

Dir(φi|λpXT
L
2
,i∗), which makes the joint log-likelihood more complex.

Bayesian Treatment

The MAP estimation approach only computes a point estimate of the prediction

result without modeling the variance (uncertainty), which is often important not only
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for robust prediction but also for applications like ensemble learning, reinforcement

learning (bandits included), and active learning. To also take the variance into

consideration we need a full Bayesian treatment of our model. Unfortunately, due to

multiple nonlinear transformations in RDL, standard variational inference [12] cannot

be used for the Bayesian inference of RDL. To solve the problem, we propose to utilize

the product of Gaussians (PoG) structure in RDL to relate the inferences on W+, η,

and {φi}. A generalized variational inference algorithm for learning the variables (i.e.,

latent variables and parameters) and predicting the links is designed. Note that GVI

goes beyond RDL and is general enough to unify other neural networks and Bayesian

networks. Again, we assume the feature generator h(φ|XT
L
2
,i∗, λp) = N (XT

L
2
,i∗, λ

−1
p IK)

here, and the derivation is similar for other choices.

GVI Framework : We follow the procedure of variational inference to update

the logarithm of variational distributions as the expectation of the joint log-likelihood

in Equation (6.2). Specifically, we have the following general update rule:

log q∗j (Zj) = Ei 6=j[log p(X0,Xc,Z)] + const,

where Z denotes the collection of all latent variables and parameters to learn, i.e.,

W+, {φi}, η, and ξii′ (note that ξii′ is the variational parameter to approximate the

sigmoid function σ(·) in Equation (6.1)). The j-th part of Z (e.g., η) is denoted by

Zj with q∗j (Zj) as its corresponding variational distribution.

Learning W+: We denote the vectorization of W+, vec(W+), as w = (we,wd)
T

where we is the collection of weights and biases of the encoder part of the RDL while

wd is for the decoder part.

For w, we can first write down the terms in L associated with w:

Lw =− λw
2

wTw − λp
2

∑
i

‖φi − fe(X0,i∗,w)T‖2
2

− λn
2

∑
i

‖fr(X0,i∗,w)−Xc,i∗‖2
2 + const.

Given the hyperparameters, we can find a local maximum of the posterior

wMAP using the back-propagation algorithm. Having found the mode wMAP , we

can make a local Gaussian approximation by evaluating the Hessian matrix A of

−Lw: A = −∇∇Lw = λwI + H, where H is the Hessian matrix corresponding

to the negation of the last two terms (except the constant term) in Lw. Note

that to dramatically speed up training we can approximate the Hessian matrix

81



Section 6.3 Hao Wang

using diagonal approximation [10] or outer product approximation (Levenberg-

Marquardt approximation) [34]. The approximation of the posterior is given by

q(w) = N (w|wMAP ,A
−1).

Algorithm 1 Bayesian RDL

1: Input: corrupted attributes X0, clean attributes Xc, observed links
{li,i′}(I,I)

(i,i′)=(1,1), number of iterations T , learning rate {ρt}Tt=1, hyperparameters
λw, λp, λe, and λn

2: for t = 1 : T do
3: // For distribution q(w)
4: Update wMAP := wMAP − ρt∇wLw

5: Compute the Hessian matrix H
6: // For distribution q(φi)
7: Update Σ−1

i := S−1
i + S′i

−1

8: Update µi := Σi(S
−1
i mi + S′i

−1m′i)
9: // For distribution q(η)

10: Update S−1
e = λeIK + 2

∑
li,i′=1 λ(ξii′)E((φi ◦ φi′)(φi ◦ φi′)

T )

11: Update me := 1
2
Se

∑
li,i′=1 E(φi ◦ φi′)

12: // For variational parameters ξii′
13: Update ξii′ :=

√
(mT

e (µi ◦ µi′))
2 + σ2

s

14: end for

Learning {φi}: We can write down the terms in L associated with {φi} as:

L{φi}
=− λp

2

∑
i

‖φi − fe(X0,i∗,w)T‖2
2 +

∑
li,i′=1

log σ(ηT (φi ◦ φi′)) + const. (6.3)

Since the first two terms can both be approximated by Gaussians, φi can be approx-

imated using the product of Gaussians (still a Gaussian distribution). We take one

term at a time.

(a) First Gaussian : If we omit the second term, given w, the features

φi ∼ N (fe(X0,i∗,w)T , λ−1
p IK),

we can further approximate the distribution of φi:

q1(φ
(j)
i |X0,i∗) =

∫
p(φ

(j)
i |X0,i∗,w

(j)
e )q(w(j)

e )dw(j)
e , (6.4)
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where φ
(j)
i is the j-th element of φi and w

(j)
e is a sub-vector of we which corresponds to

the computation of φ
(j)
i . Unfortunately the integration is still analytically intractable

due to the nonlinearity of fe(X0,i∗,w) with respect to w. If we assume that q(w)

has small variance, a Taylor series expansion of f
(j)
e (X0,i∗,w

(j)
e ) can be made around

w
(j)
e,MAP where f

(j)
e (·) is the j-th element of fe(·) and w

(j)
e,MAP is a sub-vector of

we,MAP which corresponds to the computation of φ
(j)
i :

f (j)
e (X0,i∗,w

(j)
e ) ≈ f (j)

e (X0,i∗,w
(j)
e,MAP ) + gTij(w

(j)
e −w

(j)
e,MAP )

gij = ∇
w

(j)
e
f (j)
e (X0,i∗,w

(j)
e )|

w
(j)
e =w

(j)
e,MAP

.

We then have

p(φ
(j)
i |X0,i∗,w

(j)
e ) ≈ N (φ

(j)
i |f (j)

e (X0,i∗,w
(j)
e,MAP ) + gTij(w

(j)
e −w

(j)
e,MAP ), λ−1

p ).

Taking the integration in Equation (6.4),

q1(φ
(j)
i |X0,i∗) ≈ N (φ

(j)
i |f (j)

e (X0,i∗,w
(j)
e,MAP ), λ(−1)

p + gTij(A
(j)
e )−1gij),

where A
(j)
e is a sub-matrix of A corresponding to the computation of φ

(j)
i .

Thus we have the first Gaussian q1(φi|X0,i∗) = N (φi|mi,Si) where

mi
(j) = f (j)

e (X0,i∗,w
(j)
e,MAP )

and Si is a diagonal matrix where

Si,jj = λ−1
p + gTij(A

(j)
e )−1gij.

Remark : The mean of q1(φi|X0,i∗) is the encoding of the input, and the covariance

matrix depends on the second-order information of the network.

(b) Second Gaussian : If we omit the first term and use the variational lower

bound σ(a) ≥ σ(ξ) exp{(a − ξ)/2 − λ(ξ)(a2 − ξ2)}, where λ(ξ) = 1
2ξ

(σ(ξ) − 1
2
), we

can write L{φi}
in Equation (6.3) as

L{φi}
=− λp

2

∑
i

‖φi − fe(X0,i∗,w)T‖2
2 +

∑
li,i′=1

{log σ(ξii′) + (ηT (φi ◦ φi′)− ξii′)/2

− λ(ξii′)((η
T (φi ◦ φi′))

2 − ξ2
ii′)}+ const. (6.5)
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Thus by completing the square for the second term, we can get the second

Gaussian

q2(φi|X0,i∗) = N (φi|m′i,S′i)

m′i =
1

2
S′i

∑
li,i′=1

E(η ◦ φi′)

S′i
−1

= 2
∑
li,i′=1

λ(ξii′)E((η ◦ φi′)(η ◦ φi′)
T ),

where the expectations are taken over the current q(η) and q(φi′|X0,i′∗). Thus we

have

m′i =
1

2
S′i

∑
li,i′=1

(me ◦ µi′)

S′i
−1

=2
∑
li,i′=1

λ(ξii′)(Se ◦Σi′ + (mem
T
e ) ◦Σi′ + (µi′µ

T
i′ ) ◦ Se + (me ◦ µi′)(me ◦ µi′)

T ).

Remark : The covariance matrix of q2(φi|X0,i∗) depends on a weighted sum of

the covariance of η ◦ φi′ , and the mean depends on the features of linked nodes

transformed by S′i.

(c) Product of Gaussians : Finally we can get the update rules for q(φi|X0,i∗)

according to q1(φi|X0,i∗) and q2(φi|X0,i∗):

q(φi|X0,i∗) ≈ N (φi|µi,Σi)

µi = Σi(S
−1
i mi + S′i

−1
m′i)

Σ−1
i = S−1

i + S′i
−1
.

Remark : The first Gaussian absorbs information from the content and the second

is relevant to the link information. The final update rule as the product of these

two Gaussians then summarizes both information sources and yields more powerful

features.
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Learning η: Similar to the second part of learning {φi}, we can get the update

rules for η:

q(η) = N (η|me,Se)

me =
1

2
Se

∑
li,i′=1

E(φi ◦ φi′)

S−1
e = λeIK + 2

∑
li,i′=1

λ(ξii′)E((φi ◦ φi′)(φi ◦ φi′)
T ),

where the expectations are taken over the current q(φi|X0,i∗), q(φi′|X0,i′∗), and q(η).

Thus we have

me =
1

2
Se

∑
li,i′=1

(µi ◦ µi′)

S−1e =λeIK + 2
∑

li,i′=1

λ(ξii′)(Σi ◦Σi′ + (µiµ
T
i ) ◦Σi′ + (µi′µ

T
i′ ) ◦Σi + (µi ◦ µi′)(µi ◦ µi′)

T ).

Learning ξii′ : To update ξii′ , we can set the derivative of E(L ) with respect to

ξii′ to zero and get

0 = λ′(ξii′)(E((ηT (φi ◦ φi′))
2)− ξ2

ii′).

Since λ′(ξ) is a monotonic function of ξ when ξ ≥ 0 and we set ξ ≥ 0 without loss of

generality due to symmetry of the bound around ξ = 0, λ′(x) 6= 0. Hence the square

ξ2
ii′ = E((ηT (φi ◦φi′))

2), where the expectation is taken over the current q(φi|X0,i∗),

q(φi′ |X0,i′∗), and q(η). Thus we have

ξ2
ii′ = (mT

e (µi ◦ µi′))
2 + σ2

s

σ2
s = tr(SeSh) + mT

e Shme + mT
hSemh

mh = µi ◦ µi′

Sh = Σi ◦Σi′ + (µiµ
T
i ) ◦Σi′ + (µi′µ

T
i′ ) ◦Σi.

Predicting ψ(li,i′ = 1|φi,φi′ ,η) = σ(ηT (φi ◦ φi′)): To calculate the probability

of the link between item i and item i′, σ(ηT (φi ◦ φi′)), we first approximate a =
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ηT (φi ◦ φi′) using the Gaussian distribution N (a|µs, σ2
s), where

µs = mT
e (µi ◦ µi′)

σ2
s = tr(SeSh) + mT

e Shme + mT
hSemh

mh = µi ◦ µi′

Sh = Σi ◦Σi′ + (µiµ
T
i ) ◦Σi′ + (µi′µ

T
i′ ) ◦Σi.

The probability

ψ(li,i′ = 1|φi,φi′ ,η) =

∫
σ(a)N (a|µs, σ2

s)da.

Since it cannot be evaluated analytically, we approximate σ(a) by the probit function

Φ(λa) =
∫ λa
−∞N (θ|0, 1)dθ and λ2 = π/8. Finally, we can get ψ(li,i′ = 1|φi,φi′ ,η) =

σ(κ(σ2
s)µs) where κ(σ2

s) = (1 + πσ2
s/8)−1/2. Since the final prediction takes both the

mean and variance into account, the estimation is expected to be more robust.

6.4 Experiments

Here we present both quantitative and qualitative experiment results on three

datasets from different domains to demonstrate the effectiveness of RDL for link

prediction.

6.4.1 Datasets and Evaluation Metrics

We use three datasets, two from CiteULike1 and one from arXiv2, in our ex-

periments. The first two datasets are from [120]. They were collected in different

ways, specifically, with different scales and different degrees of sparsity to mimic

different practical situations. The first dataset, citeulike-a, is mostly from [117] and

the second dataset, citeulike-t, was collected independently of the first one [120]. We

manually selected 273 seed tags and collected all the articles with at least one of

those tags. For citeulike-a, there are 16,980 nodes (documents) and 44,709 links

(citations) among them. For citeulike-t the numbers are 25,975 and 32,565. The

last dataset, arXiv, is from the SNAP datasets [74]. The number of nodes is 27,770

1CiteULike allows users to create their own collections of articles. More details about the
CiteULike data can be found at http://www.citeulike.org.

2http://www.arxiv.org

86



Section 6.4 Hao Wang

Table 6.1: Performance of RDL with different number of layers (MAP)

Link Rank AUC
RDL-1 RDL-2 RDL-3 RDL-1 RDL-2 RDL-3

citeulike-a 825.74 495.97 488.41 0.939 0.964 0.963
citeulike-t 2060.17 951.31 912.43 0.894 0.954 0.955
arXiv 5241.97 2080.72 2730.08 0.755 0.905 0.855

and the number of observed links is 352,807. We use the bags of words from the

documents as node attributes. The vocabulary size, which is denoted as B, for the

three datasets is 8,000, 20,000, and 8,000 respectively.

As in [21, 26, 115] we use link rank and AUC (area under the ROC curve) as

evaluation metrics. Link rank is defined as the average rank of the test nodes

(documents) to the training nodes [26]. AUC is computed for every test node and

the average values are reported. Therefore lower link rank and higher AUC indicate

better predictive performance.

6.4.2 Baselines and Experiment Setup

Note that as mentioned in [4,32,115], hybrid methods clearly outperform link-

based and attribute-based methods. Besides, as mentioned before, links from the new

nodes are not available in the training set, making link-based methods inapplicable

in this experiment setting. Due to space constraints, we focus only on comparison

among hybrid methods in most experiments. The hybrid models used for comparison

are listed below:

• CMF: Collective Matrix Factorization [107] simultaneously factorizes multiple

matrices (i.e., the adjacency matrix consisting of li,i′ and Xc in this chapter).

• RTM: Relational Topic Model [21] jointly models the node attributes (text of

documents) and link structures.

• gRTM: generalized Relational Topic Model (also called discriminative RTM)

[26] extends RTM by modeling topic interaction and using regularized Bayesian

inference (RegBayes), which leads to significant performance boost.

• RDL: Relational Deep Learning is our proposed model. It deeply and jointly

models the node attributes and link structures using a hierarchical Bayesian

model with layers of latent variables. It can provide different levels of model

complexity by varying the depth L.

In the experiments, we first use a validation set to find the optimal hyperpa-

rameters for CMF, RTM, gRTM, and RDL. For CMF, we set the regularization
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Figure 6.2: Link rank and AUC of compared models for citeulike-a. A
2-layer RDL is used.
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Figure 6.3: Link rank and AUC of compared models for citeulike-t. A
2-layer RDL is used.

hyperparameters for the latent factors of different contexts to 10. After the grid

search, we find that CMF performs best when the weights for the adjacency matrix

and content matrix (BOW) are 8 and 2 for all three datasets. We find that RTM

and gRTM achieve the best performance when c = 12, α = 1, and the sampling ratio

for unobserved links is set to 0.1%. For RDL we use the Gaussian feature generator

distribution and network structures of B-K, B-100-K, and B-100-100-K. For all

models we vary the representation dimensionality K from 5 to 50. We randomly

select 80% of the nodes as the training set and use the rest as the test set. The

experiments are repeated 5 times and the average performance is reported.

6.4.3 Performance Evaluation

The left of Figure 6.2, 6.3, and 6.4 shows the link rank when K is set to 5, 10, 20,

40, and 50 for the three datasets citeulike-a, citeulike-t, and arXiv. As we can see,
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Figure 6.4: Link rank and AUC of compared models for arXiv. A
2-layer RDL is used.

Table 6.2: Performance of RDL with different number of layers
(Bayesian treatment)

Link Rank AUC
RDL-1 RDL-2 RDL-3 RDL-1 RDL-2 RDL-3

citeulike-a 789.85 473.59 471.47 0.946 0.971 0.970
citeulike-t 1904.83 911.31 867.78 0.906 0.956 0.960
arXiv 4965.01 1982.84 2612.12 0.801 0.914 0.866

Table 6.3: Link rank of baselines (the first 3 columns) and RDL variants
(the last 4 columns) on three datasets (L = 4)

Method VAE+BLR VFAE+BLR SDAE+BLR MAPRDL BSDAE1+BLR BSDAE2+BLR BayesRDL
citeulike-a 980.81 960.15 992.48 495.97 849.02 761.57 473.59
citeulike-t 1599.62 1531.16 1356.85 951.31 1341.15 1310.12 911.31
arXiv 3367.25 3316.29 2916.18 2028.72 2947.79 2708.17 1982.84

RTM is able to achieve a lower link rank and outperform gRTM when K is small,

but gRTM can outperform RTM by a large margin when K is large enough. CMF

achieves the poorest performance in citeulike-a and arXiv. In citeulike-t it is able

to achieve similar performance as RTM. As for RDL, it outperforms all the other

models significantly. For example, when K = 50, the link rank for gRTM and RDL

is 744 and 495 respectively in citeulike-a. For citeulike-t and arXiv, the margins are

even larger (2724 versus 951 and 2724 versus 2080).

Similar phenomena can be observed for AUC on the right of Figure 6.2, 6.3, and

6.4. For the RTM variants, when K is small RTM is better, and when K is large

gRTM prevails. The difference is that in arXiv, gRTM is not able to outperform

RTM even when K = 50. We can also see that in terms of AUC, RDL can still

significantly outperform the baselines. In the case of K = 50, the AUC for gRTM

and RDL is 94.53% and 96.37% respectively for citeulike-a. Similarly, the margins

are even larger for citeulike-t and arXiv (86.85% versus 96.37% and 86.78% versus

90.52%).
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Table 6.1 shows the link rank and AUC of RDL when K = 50 and L is set to 2,

4, and 6 (corresponding to 1-layer, 2-layer, and 3-layer RDL) when MAP estimation

is used. As we can see, for citeulike-a, 3-layer RDL is able to achieve the lowest link

rank while 2-layer RDL performs the best in terms of AUC. For citeulike-t, 3-layer

RDL is able to achieve both the lowest link rank and the highest AUC. For arXiv,

2-layer RDL has the best predictive performance in terms of both link rank and

AUC. The performance slightly degrades when L further increases to 6 possibly due

to overfitting.

Similarly, Table 6.2 shows the link rank and AUC of RDL when K = 50 and L is

set to 2, 4, and 6 when Bayesian treatment (GVI) is used. The results are consistent

with those of MAP estimation. With the Bayesian treatment, prediction is more

robust when both the mean and variance are taken into account, yielding a relative

boost of about 5% over RDL with MAP estimation.

Table 6.3 shows the link rank for different AE variants (with the same network

structures) and RDL variants when L = 4 and K = 50. As we can see, the variational

autoencoder [68] combined with Bayesian logistic regression (VAE+BLR), the varia-

tional fair autoencoder [81] combined with Bayesian logistic regression (VFAE+BLR),

and the stacked denoising autoencoder combined with Bayesian logistic regression

(SDAE+BLR) achieve similar link rank. The Bayesian SDAE (BSDAE with our

proposed Bayesian treatment) with Bayesian logistic regression (BSDAE+BLR)

can outperform them three (these AE variants are not hybrid models since node

attributes and link structures are not jointly modeled). Here BSDAE1+BLR uses

only the mean produced by Bayesian SDAE as features in BLR, and BSDAE2+BLR

uses both the mean and variance. The performance gap between BSDAE1+BLR

and BSDAE2+BLR verifies the effectiveness of BSDAE’s estimated variance. As

the strongest models, RDL with MAP (MAPRDL) significantly outperforms the

variants above and RDL with Bayesian treatment (BayesRDL) is able to further

boost the performance. Note that the performance gap between BSDAE2+BLR and

BayesRDL verifies the importance of BayesRDL’s joint training. In this experiment,

we use a variant of VFAE without nuisance variables [81] in the semi-supervised

setting (with the number of links connected to training nodes as targets) to learn

the representations.
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Figure 6.5: t-SNE visualization of latent factors learned by RDL (left)
and RTM (right).

6.4.4 Case Study

To gain a better insight into the difference between RDL and RTM, we select a

test node (article) t with the title ‘From DNA sequence to transcriptional behaviour:

a quantitative approach’ as an example to visualize the latent factors (features φi)

learned by RDL and RTM using t-SNE [113]. As shown in Figure 6.5, the red

stars are the latent factors of articles with links to the test node t. The blue circles

correspond to the latent factors of randomly sampled nodes without links to node

t. As we can see, the nodes with links to node t are scattered all over the plot for

RTM. However, they are well separated from the ones without links to node t in

RDL. Moreover, interestingly in the RDL plot, the blue circles roughly form two

clusters. Looking into the data, we find that the small cluster on the left consists

of articles written in German, which are rare in the datasets. The large one in the

middle corresponds to some bestselling books like ‘The 4-Hour Work Week: Escape

9-5, Live Anywhere, and Join the New Rich’ and ‘Mary Bell’s Complete Dehydrator

Cookbook’.

Besides this example, we look at another two example articles from the test set and

the top 10 predicted links (citations) for them returned by RDL and gRTM. In Table

6.4 (articles with titles in bold mean correct predictions), the first example (query)

is a computer vision paper with the title ‘Object class recognition by unsupervised

scale-invariant learning’. As we can see, while gRTM is able to capture the problem

‘object class recognition’ and suggest links to articles on ‘visual categorization’ and

‘object detection’ (which is a problem closely related to ‘object class recognition’),

it fails to identify the key notions on ‘unsupervised learning’ and ‘scale-invariant

learning’ of the target article. On the other hand, these notions are successfully

captured by RDL to predict links to articles like ‘Distinctive image features from
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Table 6.4: Top 10 link predictions made by gRTM and RDL for two
articles from citeulike-a.

Query: Object class recognition by unsupervised scale-invariant learning

g
R

T
M

Layered depth images
Using spin images for efficient object recognition in cluttered 3D scenes
Snakes: active contour models
Visual learning and recognition of 3-D objects from appearance
Contextual priming for object detection
Visual categorization with bags of keypoints
Non-parametric model for background subtraction
Alignment by maximization of mutual information
Rapid object detection using a boosted cascade of simple features
W4: real-time surveillance of people and their activities

R
D

L

Distinctive image features from scale-invariant keypoints
visual learning and recognition of 3-D objects from appearance
Object recognition with features inspired by visual cortex
Unsupervised learning of models for recognition
Robust object recognition with cortex-like mechanisms
Generative versus discriminative methods for object recognition
Using spin images for efficient object recognition in cluttered 3D scenes
Learning generative visual models from few training examples
3D object modeling and recognition using affine-invariant patches
A Bayesian approach to unsupervised one-shot learning of object categories

Query: SCOP database in 2004: refinements integrate structure and sequence family data

g
R

T
M

Pfam: multiple sequence alignments and HMM-profiles of protein domains
Structure, function and evolution of multidomain proteins
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
Nature of the protein universe
The CATH domain structure database and related resources
Phylogenetic classification of short environmental DNA fragments
The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes
LGA: a method for finding 3D similarities in protein structures
Amino acid substitution matrices from protein blocks
Multiple protein sequence alignment

R
D

L

The universal protein resource (UniProt)
E-MSD: an integrated data resource for bioinformatics
Gene3D: comprehensive structural and functional annotation of genomes
The universal protein resource (UniProt) in 2010
Gene3D: modelling protein structure, function and evolution
The universal protein resource (UniProt): an expanding universe of protein information
Pfam: clans, web tools and services
The Pfam protein families database
The protein data bank
SCOP: a structural classification of proteins database

scale-invariant keypoints’, ‘Unsupervised learning of models for recognition’, and

‘Learning generative visual models from few training examples’, aside from ‘object

class recognition’ papers like ‘Object recognition with features inspired by visual

cortex’. Consequently, gRTM attains a precision of only 20% while RDL is able to

significantly boost the performance to achieve a precision of 60%. Another example is

a biology and bioinformatics paper with the title ‘SCOP database in 2004: refinements

integrate structure and sequence family data’. Similarly, gRTM can only recognize

that the target paper is on the structure of proteins but miss the fact that this

paper is mainly on a bioinformatics database. Again, RDL is able to recognize

that this article is from the community researching on bioinformatics databases and

predict the links to several relevant articles on this topic. As a result, the precision

for gRTM is only 10% but RDL is able to achieve a much higher precision of 50%.
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Figure 6.6: Hyperparameter sensitivity of λe for link rank and AUC.

From these examples, we can see that by jointly and deeply modeling the node

attributes and link structures, RDL is able to better partition the topic space and

community structures of nodes and more accurately pinpoint the target node (article)

in the semantic space. In addition, RDL is able to simultaneously capture multiple

concepts of interest while gRTM cannot.

6.5 Hyperparameter Sensitivity

Figure 6.6 shows the hyperparameter sensitivity of λe for different K. Since the

hyperparameters are highly correlated to K, we use λe/K in the x-axis instead of λe

for clarity and consistence among different K values. As we can see, the performance

is not very sensitive to λe. RDL can achieve both the lowest link rank and the

highest AUC in a relatively wide range of values for λe/K for different K. The

performance slightly decreases if λe/K is lower than the range and dramatically

decreases if λe/K is higher than the range. Similar phenomena can be observed for

other hyperparameters.

6.6 Conclusion

In this chapter we propose a hierarchical Bayesian model, RDL, to jointly and

deeply model the node attributes and link structures of network data. Besides

learning the model using MAP estimation, to cope with the multiple nonlinear

transformations in RDL, we propose to utilize the PoG structure in RDL to relate

the inferences on different variables and derive the GVI algorithm (that can be
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adapted for arbitrary neural networks and Bayesian networks) for learning the

variables and prediction. Experiments on three real-world datasets show that RDL

can significantly advance the state of the art.

The nature of Bayesian formulation makes it convenient to extend RDL to

incorporate other auxiliary information for link prediction. Besides, RDL can also

be extended naturally to handle multi-relational data (multiple networks). A multi-

relational extension of RDL can not only jointly model multiple networks and boost

the predictive performance, but it can also discover the relationships between different

networks. Another interesting direction would be to adapt GVI to unify other neural

networks (e.g., CNN) and other Bayesian networks (e.g., probabilistic topic models

and probabilistic matrix factorization) for other tasks (e.g., text modeling and

recommendation). We can also replace BSDAE with the recently proposed natural-

parameter networks [125] to improve efficiency and accuracy. Additionally, with the

uncertainty modeled, Bayesian RDL is expected to perform much better for link

prediction in settings like active learning and bandits. The possible extensions above

will be pursued in our future work.
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Chapter 7

Natural-Parameter Networks

Note that for each BDL models introduced in Chapter 3∼6, there can be different

inference methods to learn the parameters. As mentioned in Chapter 2, we can

either use MAP to learn the point estimates of the parameters or use full Bayesian

treatments to learn the (posterior) distributions of the parameters. As we discussed in

Chapter 1, due to the deep architecture of perception components, efficient Bayesian

learning of deep NN is crucial for a practical Bayesian treatment of BDL models.

In this chapter, we introduce natural-parameter networks (NPN) as a family of

probabilistic neural networks, which can be used either as standalone models or as

components incorporated into BDL models to facilitate Bayesian learning of their

perception components.

We will first provide a general formulation for linear, nonlinear, and deep nonlinear

NPN, followed by several concrete NPNs assuming different types of distributions

(e.g., gamma distributions and Poisson distributions) for the neurons and weights. We

will then demonstrate the effectiveness of NPN’s probabilistic (Bayesian) learning on

problems such as classification, regression, and second-order representation learning.

7.1 Introduction

Recently neural networks (NN) have achieved state-of-the-art performance in

various applications ranging from computer vision [66] to natural language processing

[102]. However, NN trained by stochastic gradient descent (SGD) or its variants is

known to suffer from overfitting especially when training data is insufficient. Besides
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overfitting, another problem of NN comes from the underestimated uncertainty,

which could lead to poor performance in applications like active learning.

Bayesian neural networks (BNN) offer the promise of tackling these problems in a

principled way. Early BNN works include methods based on Laplace approximation

[83], variational inference (VI) [52], and Monte Carlo sampling [87], but they have

not been widely adopted due to their lack of scalability. Some recent advances in

this direction seem to shed light on the practical adoption of BNN. [42] proposed

a method based on VI in which a Monte Carlo estimate of a lower bound on the

marginal likelihood is used to infer the weights. Recently, [48] used an online version

of expectation propagation (EP), called ‘probabilistic back propagation’ (PBP), for

the Bayesian learning of NN, and [17] proposed ‘Bayes by Backprop’ (BBB), which

can be viewed as an extension of [42] based on the ‘reparameterization trick’ [68].

More recently, an interesting Bayesian treatment called ‘Bayesian dark knowledge’

(BDK) was designed to approximate a teacher network with a simpler student network

based on stochastic gradient Langevin dynamics (SGLD) [5].

Although these recent methods are more practical than earlier ones, several

outstanding problems remain to be addressed: (1) most of these methods require

sampling either at training time [5, 17,42] or at test time [17], incurring much higher

cost than a ‘vanilla’ NN; (2) as mentioned in [5], methods based on online EP

or VI do not involve sampling, but they need to compute the predictive density

by integrating out the parameters, which is computationally inefficient; (3) these

methods assume Gaussian distributions for the weights and neurons, allowing no

flexibility to customize different distributions according to the data as is done in

probabilistic graphical models (PGM).

To address the problems, we propose natural-parameter networks (NPN) as a

class of probabilistic neural networks where the input, target output, weights, and

neurons can all be modeled by arbitrary exponential-family distributions (e.g., Pois-

son distributions for word counts) instead of being limited to Gaussian distributions.

Input distributions go through layers of linear and nonlinear transformation deter-

ministically before producing distributions to match the target output distributions

(previous work [114] shows that providing distributions as input by corrupting the

data with noise plays the role of regularization). As byproducts, output distributions

of intermediate layers may be used as second-order representations for the associated

tasks. Thanks to the properties of the exponential family [12,95], distributions in

NPN are defined by the corresponding natural parameters which can be learned

efficiently by backpropagation (BP). Unlike [5,17], NPN explicitly propagates the
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estimates of uncertainty back and forth in deep networks. This way the uncertainty

estimates for each layer of neurons are readily available for the associated tasks. Our

experiments show that such information is helpful when neurons of intermediate

layers are used as representations like in autoencoders (AE). In summary, our main

contributions are:

• We propose NPN as a class of probabilistic neural networks. Our model

combines the merits of NN and PGM in terms of computational efficiency and

flexibility to customize the types of distributions for different types of data.

• Leveraging the properties of the exponential family, some sampling-free BP-

compatible algorithms are designed to efficiently learn the distributions over

weights by learning the natural parameters.

• Unlike most probabilistic NN models, NPN obtains the uncertainty of intermediate-

layer neurons as byproducts, which provide valuable information to the learned

representations. Experiments on real-world datasets show that NPN can achieve

state-of-the-art performance on classification, regression, and unsupervised

representation learning tasks.

7.2 Natural-Parameter Networks

The exponential family refers to an important class of distributions with use-

ful algebraic properties. Distributions in the exponential family have the form

p(x|η) = h(x)g(η) exp{ηTu(x)}, where x is the random variable, η denotes the

natural parameters, u(x) is a vector of sufficient statistics, and g(η) is the normalizer.

For a given type of distributions, different choices of η lead to different shapes.

For example, a univariate Gaussian distribution with η = (c, d)T corresponds to

N (− c
2d
,− 1

2d
).

Motivated by this observation, in NPN, only the natural parameters need to be

learned to model the distributions over the weights and neurons. Consider an NPN

which takes a vector random distribution (e.g., a multivariate Gaussian distribution)

as input, multiplies it by a matrix random distribution, goes through nonlinear

transformation, and outputs another distribution. Since all three distributions in the

process can be specified by their natural parameters (given the types of distributions),

learning and prediction of the network can actually operate in the space of natural

parameters. For example, if we use element-wise (factorized) gamma distributions

for both the weights and neurons, the NPN counterpart of a vanilla network only
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needs twice the number of free parameters (weights) and neurons since there are two

natural parameters for each univariate gamma distribution.

7.2.1 Notation and Conventions

We use boldface uppercase letters like W to denote matrices and boldface

lowercase letters like b for vectors. Similarly, a boldface number (e.g., 1 or 0)

represents a row vector or a matrix with identical entries. In NPN, o(l) is used to

denote the values of neurons in layer l before nonlinear transformation and a(l) is for

the values after nonlinear transformation. As mentioned above, NPN tries to learn

distributions over variables rather than variables themselves. Hence we use letters

without subscripts c, d, m, and s (e.g., o(l) and a(l)) to denote ‘random variables’ with

corresponding distributions. Subscripts c and d are used to denote natural parameter

pairs, such as Wc and Wd. Similarly, subscripts m and s are for mean-variance pairs.

Note that for clarity, many operations used below are implicitly element-wise, for

example, the square z2, division z
b

, partial derivative ∂z
∂b

, the gamma function Γ(z),

logarithm log z, factorial z!, 1 + z, and 1
z
. For the data D = {(xi,yi)}Ni=1, we set

a
(0)
m = xi, a

(0)
s = 0 (Input distributions with a

(0)
s 6= 0 resemble AE’s denoising effect.)

as input of the network and yi denotes the output targets (e.g., labels and word

counts). In the following text we drop the subscript i (and sometimes the superscript

(l)) for clarity. The bracket (·, ·) denotes concatenation or pairs of vectors.

7.2.2 Linear Transformation in NPN

Here we first introduce the linear form of a general NPN. For simplicity, we

assume distributions with two natural parameters (e.g., gamma distributions, beta

distributions, and Gaussian distributions), η = (c, d)T , in this section. Specifi-

cally, we have factorized distributions on the weight matrices, p(W(l)|W(l)
c ,W

(l)
d ) =∏

i,j p(W
(l)
ij |W

(l)
c,ij,W

(l)
d,ij), where the pair (W

(l)
c,ij,W

(l)
d,ij) is the corresponding natural

parameters. For b(l), o(l), and a(l) we assume similar factorized distributions.

In a traditional NN, the linear transformation follows o(l) = a(l−1)W(l) + b(l)

where a(l−1) is the output from the previous layer. In NN a(l−1), W(l), and b(l)

are deterministic variables while in NPN they are exponential-family distributions,

meaning that the result o(l) is also a distribution. For convenience of subsequent

computation it is desirable to approximate o(l) using another exponential-family

distribution. We can do this by matching the mean and variance. Specifically, after
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computing (W
(l)
m ,W

(l)
s ) = f(W

(l)
c ,W

(l)
d ) and (b

(l)
m ,b

(l)
s ) = f(b

(l)
c ,b

(l)
d ), we can get

o
(l)
c and o

(l)
d through the mean o

(l)
m and variance o

(l)
s of o(l) as follows:

(a(l−1)
m , a(l−1)

s ) = f(a(l−1)
c , a

(l−1)
d ), o(l)

m = a(l−1)
m W(l)

m + b(l)
m , (7.1)

o(l)
s = a(l−1)

s W(l)
s + a(l−1)

s (W(l)
m ◦W(l)

m ) + (a(l−1)
m ◦ a(l−1)

m )W(l)
s + b(l)

s ,

(7.2)

(o(l)
c ,o

(l)
d ) = f−1(o(l)

m ,o
(l)
s ), (7.3)

where ◦ denotes the element-wise product and the bijective function f(·, ·) maps

the natural parameters of a distribution into its mean and variance (e.g., f(c, d) =

( c+1
−d ,

c+1
d2 ) in gamma distributions). Similarly we use f−1(·, ·) to denote the inverse

transformation. W
(l)
m , W

(l)
s , b

(l)
m , and b

(l)
s are the mean and variance of W(l) and

b(l) obtained from the natural parameters. The computed o
(l)
m and o

(l)
s can then

be used to recover o
(l)
c and o

(l)
d , which will subsequently facilitate the feedforward

computation of the nonlinear transformation described in Section 7.2.3.

7.2.3 Nonlinear Transformation in NPN

After we obtain the linearly transformed distribution over o(l) defined by natural

parameters o
(l)
c and o

(l)
d , an element-wise nonlinear transformation v(·) (with a well

defined inverse function v−1(·)) will be imposed. The resulting activation distribution

is pa(a
(l)) = po(v

−1(a(l)))|v−1′(a(l))|, where po is the factorized distribution over o(l)

defined by (o
(l)
c ,o

(l)
d ).

Though pa(a
(l)) may not be an exponential-family distribution, we can approx-

imate it with one, p(a(l)|a(l)
c , a

(l)
d ), by matching the first two moments. Once the

mean a
(l)
m and variance a

(l)
s of pa(a

(l)) are obtained, we can compute corresponding

natural parameters with f−1(·, ·) (approximation accuracy is sufficient according to

preliminary experiments). The feedforward computation is:

am =

∫
po(o|oc,od)v(o)do,

as =

∫
po(o|oc,od)v(o)2do− a2

m,

(ac, ad) = f−1(am, as). (7.4)

Here the key computational challenge is computing the integrals in Equation (7.4).

Closed-form solutions are needed for their efficient computation. If po(o|oc,od) is a
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Table 7.1: Activation Functions for Exponential-Family Distributions

Distribution Probability Density Function Activation Function Support

Beta Distribution p(x) =
Γ(c+d)

Γ(c)Γ(d)
xc−1(1− x)d−1 qxτ , τ ∈ (0, 1) [0, 1]

Rayleigh Distribution p(x) = x
σ2 exp{− x2

2σ2 } r − q exp{−τx2} (0,+∞)

Gamma Distribution p(x) = 1
Γ(c)

dcxc−1 exp{−dx} r − q exp{−τx} (0,+∞)

Poisson Distribution p(x) =
cx exp{−c}

x!
r − q exp{−τx} Nonnegative interger

Gaussian Distribution p(x) = (2πσ2)
− 1

2 exp{− 1
2σ2 (x− µ)2} ReLU, tanh, and sigmoid (−∞,+∞)

Gaussian distribution, closed-form solutions exist for common activation functions

like tanh(x) and max(0, x) (details are in Section B.2.3). Unfortunately this is not

the case for other distributions. Leveraging the convenient form of the exponential

family, we find that it is possible to design activation functions so that the integrals

for non-Gaussian distributions can also be expressed in closed form.

Theorem 1. Assume an exponential-family distribution po(x|η) = h(x)g(η) exp{ηTu(x)},
where the vector u(x) = (u1(x), u2(x), . . . , uM(x))T (M is the number of natural pa-

rameters). If activation function v(x) = r − q exp(−τui(x)) is used, the first two

moments of v(x),
∫
po(x|η)v(x)dx and

∫
po(x|η)v(x)2dx, can be expressed in closed

form. Here i ∈ {1, 2, . . . ,M} (different ui(x) corresponds to a different set of

activation functions) and r, q, and τ are constants.

Proof. We first let η = (η1, η2, . . . , ηM), η̃ = (η1, η2, . . . , ηi − τ, . . . , ηM), and η̂ =

(η1, η2, . . . , ηi − 2τ, . . . , ηM). The first moment of v(x) is

E(v(x)) = r − q
∫
h(x)g(η) exp{ηTu(x)− τui(x)} dx

= r − q
∫
h(x)

g(η)

g(η̃)
g(η̃) exp{η̃Tu(x)} dx = r − q g(η)

g(η̃)
.

Similarly the second moment can be computed as E(v(x)2) = r2 + q2 g(η)

g(η̂)
− 2rq

g(η)

g(η̃)
.

A more detailed proof is provided in the appendix. With Theorem 2, what remains

is to find the constants that make v(x) strictly increasing and bounded (Table 7.1

shows some exponential-family distributions and their possible activation functions).

For example in Equation (7.4), if v(x) = r − q exp(−τx), am = r − q( od
od+τ

)oc for the

gamma distribution.

In the backpropagation, for distributions with two natural parameters the gradient

consists of two terms. For example, ∂E
∂oc

= ∂E
∂am
◦ ∂am
∂oc

+ ∂E
∂as
◦ ∂as
∂oc
, where E is the error

term of the network.
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Algorithm 2 Deep Nonlinear NPN

1: Input: Data D = {(xi,yi)}Ni=1, number of iterations T , learning rate ρt, number
of layers L.

2: for t = 1 : T do
3: for l = 1 : L do
4: Apply Equation (7.1)-(7.4) to compute the linear and nonlinear transfor-

mation in layer l.
5: end for
6: Compute the error E from (o

(L)
c ,o

(L)
d ) or (a

(L)
c , a

(L)
d ).

7: for l = L : 1 do
8: Compute ∂E

∂W
(l)
m

, ∂E

∂W
(l)
s

, ∂E

∂b
(l)
m

, and ∂E

∂b
(l)
s

.

9: Compute ∂E

∂W
(l)
c

, ∂E

∂W
(l)
d

, ∂E

∂b
(l)
c

, and ∂E

∂b
(l)
d

.

10: end for
11: Update W

(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d in all layers.

12: end for

7.2.4 Deep Nonlinear NPN

Naturally layers of nonlinear NPN can be stacked to form a deep NPN1, as shown

in Algorithm 22.

A deep NPN is in some sense similar to a PGM with a chain structure. Unlike

PGM in general, however, NPN does not need costly inference algorithms like

variational inference or Markov chain Monte Carlo. For some chain-structured PGM

(e.g, hidden Markov models), efficient inference algorithms also exist due to their

special structure. Similarly, the Markov property enables NPN to be efficiently

trained in an end-to-end backpropagation learning fashion in the space of natural

parameters.

PGM is known to be more flexible than NN in the sense that it can choose

different distributions to depict different relationships among variables. A major

drawback of PGM is its scalability especially when the PGM is deep. Different from

PGM, NN stacks relatively simple computational layers and learns the parameters

using backpropagation, which is computationally more efficient than most algorithms

for PGM. NPN has the potential to get the best of both worlds. In terms of flexibility,

different types of exponential-family distributions can be chosen for the weights and

neurons. Using gamma distributions for both the weights and neurons in NPN leads

1Although the approximation accuracy may decrease as NPN gets deeper during feedforward
computation, it can be automatically adjusted according to data during backpropagation.

2Note that since the first part of Equation (7.1) and the last part of Equation (7.4) are canceled

out, we can directly use (a
(l)
m ,a

(l)
s ) without computing (a

(l)
c ,a

(l)
d ) here.

101



Section 7.3 Hao Wang

to a deep and nonlinear version of nonnegative matrix factorization [73] while an

NPN with the Bernoulli distribution and sigmoid activation resembles a Bayesian

treatment of sigmoid belief networks [86]. If Poisson distributions are chosen for the

neurons, NPN becomes a neural analogue of deep Poisson factor analysis [47, 147].

Note that similar to the weight decay in NN, we may add the KL divergence

between the prior distributions and the learned distributions on the weights to the

error E for regularization (we use isotropic Gaussian priors in the experiments). In

NPN, the chosen prior distributions correspond to priors in Bayesian models and the

learned distributions correspond to the approximation of posterior distributions on

weights. Note that the generative story assumed here is that weights are sampled

from the prior, and then output is generated (given all data) from these weights.

7.3 Variants of NPN

In this section, we introduce three NPN variants with different properties to

demonstrate the flexibility and effectiveness of NPN. Note that in practice we use a

transformed version of the natural parameters, referred to as proxy natural parameters

here, instead of the original ones for computational efficiency. For example, in gamma

distributions p(x|c, d) = Γ(c)−1dcxc−1 exp(−dx), we use proxy natural parameters

(c, d) during computation rather than the natural parameters (c− 1,−d).

7.3.1 Gamma NPN

The gamma distribution with support over positive values is an important mem-

ber of the exponential family. The corresponding probability density function is

p(x|c, d) = Γ(c)−1dcxc−1 exp(−dx) with (c − 1,−d) as its natural parameters (we

use (c, d) as proxy natural parameters). If we assume gamma distributions for W(l),

b(l), o(l), and a(l), an AE formed by NPN becomes a deep and nonlinear version of

nonnegative matrix factorization [73]. To see this, note that this AE with activation

v(x) = x and zero biases b(l) is equivalent to finding a factorization of matrix X such

that X = H
∏L

l=L
2

W(l) where H denotes the middle-layer neurons and W(l) has

nonnegative entries from gamma distributions. In this gamma NPN, parameters W
(l)
c ,

W
(l)
d , b

(l)
c , and b

(l)
d can be learned following Algorithm 2. We detail the algorithm as

follows:

102



Section 7.3 Hao Wang

Linear Transformation: Since gamma distributions are assumed here, we

can use the function f(c, d) = ( c
d
, c
d2 ) to compute (W

(l)
m ,W

(l)
s ) = f(W

(l)
c ,W

(l)
d ),

(b
(l)
m ,b

(l)
s ) = f(b

(l)
c ,b

(l)
d ), and (o

(l)
c ,o

(l)
d ) = f−1(o

(l)
m ,o

(l)
s ) during the probabilistic

linear transformation in Equation (7.1)-(7.3).

Nonlinear Transformation: With the proxy natural parameters for the gamma

distributions over o(l), the mean a
(l)
m and variance a

(l)
s for the nonlinearly transformed

distribution over a(l) would be obtained with Equation (7.4). Following Theorem 2,

closed-form solutions are possible with v(x) = r(1− exp(−τx)) (r = q and ui(x) = x)

where r and τ are constants. Using this new activation function, we have (see Section

B.2.1 and B.6.1 of the appendix for details on the function and derivation):

am =

∫
po(o|oc,od)v(o)do

= r(1− ooc
d

Γ(oc)
◦ Γ(oc) ◦ (od + τ)−oc)

= r(1− (
od

od + τ
)oc),

as = r2((
od

od + 2τ
)oc − (

od
od + τ

)2oc).

Error: With o
(L)
c and o

(L)
d , we can compute the regression error E as the negative

log-likelihood:

E = (log Γ(o(L)
c )− o(L)

c ◦ log o
(L)
d − (o(L)

c − 1) ◦ log y + o
(L)
d ◦ y)1T ,

where y is the observed output corresponding to x. For classification, cross-entropy

loss can be used as E. Following the computation flow above, BP can be used to

learn W
(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d .

7.3.2 Gaussian NPN

Different from the gamma distribution which has support over positive values

only, the Gaussian distribution, also an exponential-family distribution, can describe

real-valued random variables. This makes it a natural choice for NPN. We refer to

this NPN variant with Gaussian distributions over both the weights and neurons as

Gaussian NPN. Details of Algorithm 2 for Gaussian NPN are as follows:

Linear Transformation: Besides support over real values, another property of

Gaussian distributions is that the mean and variance can be used as proxy natural
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parameters, leading to an identity mapping function f(c, d) = (c, d) which cuts the

computation cost. We can use this function to compute (W
(l)
m ,W

(l)
s ) = f(W

(l)
c ,W

(l)
d ),

(b
(l)
m ,b

(l)
s ) = f(b

(l)
c ,b

(l)
d ), and (o

(l)
c ,o

(l)
d ) = f−1(o

(l)
m ,o

(l)
s ) during the probabilistic linear

transformation in Equation (7.1)-(7.3).

Nonlinear Transformation: If the sigmoid activation v(x) = σ(x) = 1
1+exp(−x)

is used, am in Equation (7.4) would be (convolution of Gaussian with sigmoid is

approximated by another sigmoid):

am =

∫
N (o|oc, diag(od)) ◦ σ(o)do ≈ σ(

oc

(1 + ζ2od)
1
2

), (7.5)

as =

∫
N (o|oc, diag(od)) ◦ σ(o)2do− a2

m ≈ σ(
α(oc + β)

(1 + ζ2α2od)1/2
)− a2

m, (7.6)

where α = 4− 2
√

2, β = − log(
√

2 + 1), and ζ2 = π/8. Similar approximation can

be applied for activation v(x) = tanh(x) since tanh(x) = 2σ(2x)− 1.

If the ReLU activation v(x) = max(0, x) is used, we can use the techniques in [31]

to obtain the first two moments of max(z1, z2) where z1 and z2 are Gaussian random

variables. Full derivation for v(x) = σ(x), v(x) = tanh(x), and v(x) = max(0, x) is

left to the appendix.

Error: With o
(L)
c and o

(L)
d in the last layer, we can then compute the error E

as the KL divergence KL(N (o
(L)
c , diag(o

(L)
d )) ‖N (ym, diag(ε))), where ε is a vector

with all entries equal to a small value ε. Hence the error

E =
1

2
(

ε

o
(L)
d

1T + (
1

o
(L)
d

)(o(L)
c − y)T −K + (log o

(L)
d )1T −K log ε).

For classification tasks, cross-entropy loss is used. Following the computation

flow above, BP can be used to learn W
(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d .

7.3.3 Poisson NPN

The Poisson distribution, as another member of the exponential family, is often

used to model counts (e.g., counts of words, topics, or super topics in documents).

Hence for text modeling, it is natural to assume Poisson distributions for neurons in

NPN. Interestingly, this design of Poisson NPN can be seen as a neural analogue of

some Poisson factor analysis models [147].
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Figure 7.1: Predictive distributions for PBP, BDK, dropout NN, and
NPN. The shaded regions correspond to ±3 standard deviations. The
black curve is the data-generating function and blue curves show the
mean of the predictive distributions. Red stars are the training data.

Besides closed-form nonlinear transformation, another challenge of Poisson NPN

is to map the pair (o
(l)
m ,o

(l)
s ) to the single parameter o

(l)
c of Poisson distributions. Ac-

cording to the central limit theorem, we have o
(l)
c = 1

4
(2o

(l)
m −1+

√
(2o

(l)
m − 1)2 + 8o

(l)
s )

(see Section B.3 and B.6.3 of the appendix for proofs, justifications, and detailed

derivation of Poisson NPN).

7.4 Experiments

In this section we evaluate variants of NPN and other state-of-the-art methods

on four real-world datasets. We use Matlab (with GPU) to implement NPN, AE

variants, and the ‘vanilla’ NN trained with dropout SGD (dropout NN). For other

baselines, we use the Theano library [9] and MXNet [27].

7.4.1 Toy Regression Task

To gain some insights into NPN, we start with a toy 1d regression task so that

the predicted mean and variance can be visualized. Following [5], we generate 20

points in one dimension from a uniform distribution in the interval [−4, 4]. The

target outputs are sampled from the function y = x3 + εn, where εn ∼ N (0, 9). We

fit the data with the Gaussian NPN, BDK, and PBP (see the appendix for detailed

hyperparameters). Figure 7.1 shows the predicted mean and variance of NPN, BDK,

and PBP along with the mean provided by the dropout NN (for larger versions

of figures please refer to the end of the appendix). As we can see, the variance of

PBP, BDK, and NPN diverges as x is farther away from the training data. Both

NPN’s and BDK’s predictive distributions are accurate enough to keep most of the

y = x3 curve inside the shaded regions with relatively low variance. An interesting

observation is that the training data points become more scattered when x > 0.
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Table 7.2: Test Error Rates on MNIST

Method BDK BBB Dropout1 Dropout2 gamma NPN Gaussian NPN

Error 1.38% 1.34% 1.33% 1.40% 1.27% 1.25%

Table 7.3: Test Error Rates for Different Size of Training Data

Size 100 500 2,000 10,000

NPN 29.97% 13.79% 7.89% 3.28%

Dropout 32.58% 15.39% 8.78% 3.53%

BDK 30.08% 14.34% 8.31% 3.55%

Ideally, the variance should start diverging from x = 0, which is what happens in

NPN. However, PBP and BDK are not sensitive enough to capture this dispersion

change. In another dataset, Boston Housing, the root mean square error for PBP,

BDK, and NPN is 3.01, 2.82, and 2.57.

7.4.2 MNIST Classification

The MNIST digit dataset consists of 60,000 training images and 10,000 test

images. All images are labeled as one of the 10 digits. We train the models with

50,000 images and use 10,000 images for validation. Networks with a structure of

784-800-800-10 are used for all methods, since 800 works best for the dropout NN

(denoted as Dropout1 in Table 7.2) and BDK (BDK with a structure of 784-400-

400-10 achieves an error rate of 1.41%). We also try the dropout NN with twice the

number of hidden neurons (Dropout2 in Table 7.2) for fair comparison. For BBB, we

directly quote their results from [17]. We implement BDK and NPN using the same

hyperparameters as in [5] whenever possible. Gaussian priors are used for NPN (see

the appendix for detailed hyperparameters).
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Figure 7.2: Classification
accuracy for different
variance (uncertainty). Note
that ‘1’ in the x-axis means
a

(L)
s 1T ∈ [0, 0.04), ‘2’ means

a
(L)
s 1T ∈ [0.04, 0.08), etc.

As shown in Table 7.2, BDK and BBB achieve comparable

performance with dropout NN (similar to [5], PBP is not

included in the comparison since it supports regression only),

and gamma NPN slightly outperforms dropout NN. Gaussian

NPN is able to achieve a lower error rate of 1.25%. Note

that BBB with Gaussian priors can only achieve an error

rate of 1.82%; 1.34% is the result of using Gaussian mixture

priors. For reference, the error rate for dropout NN with 1600

neurons in each hidden layer is 1.40%. The time cost per

epoch is 18.3s, 16.2s, and 6.4s for NPN, BDK, NN respectively. Note that BDK is in

C++ and NPN is in Matlab.
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To evaluate NPN’s ability as a Bayesian treatment to avoid overfitting, we vary

the size of the training set (from 100 to 10,000 data points) and compare the test

error rates. As shown in Table 7.3, the margin between the Gaussian NPN and

dropout NN increases as the training set shrinks. Besides, to verify the effectiveness

of the estimated uncertainty, we split the test set into 9 subsets according NPN’s

estimated variance (uncertainty) a
(L)
s 1T for each sample and show the accuracy for

each subset in Figure 7.2. We can find that the more uncertain NPN is, the lower

the accuracy, indicating that the estimated uncertainty is well calibrated.

7.4.3 Second-Order Representation Learning

Besides classification and regression, we also consider the problem of unsupervised

representation learning with a subsequent link prediction task. Three real-world

datasets, citeulike-a, citeulike-t, and arXiv, are used. The first two datasets are

from [117, 120], collected separately from CiteULike in different ways to mimic

different real-world settings. The third one is from arXiv as one of the SNAP

datasets [74]. citeulike-a consists of 16,980 documents, 8,000 terms, and 44,709 links

(citations). citeulike-t consists of 25,975 documents, 20,000 terms, and 32,565 links.

The last dataset, arXiv, consists of 27,770 documents, 8,000 terms, and 352,807 links.

The task is to perform unsupervised representation learning before feeding the

extracted representations (middle-layer neurons) into a Bayesian LR algorithm [12].

We use the stacked autoencoder (SAE) [41], stacked denoising autoencoder (SDAE)

[114], variational autoencoder (VAE) [68] as baselines (hyperparameters like weight

decay and dropout rate are chosen by cross validation). As in SAE, we use different

variants of NPN to form autoencoders where both the input and output targets

are bag-of-words (BOW) vectors for the documents. The network structure for all

models is B-100-50 (B is the number of terms). Please refer to the appendix for

detailed hyperparameters.

One major advantage of NPN over SAE and SDAE is that the learned repre-

sentations are distributions instead of point estimates. Since representations from

NPN contain both the mean and variance, we call them second-order representations.

Note that although VAE also produces second-order representations, the variance

part is simply parameterized by multilayer perceptrons while NPN’s variance is

naturally computed through propagation of distributions. These 50-dimensional

representations with both mean and variance are fed into a Bayesian LR algorithm

for link prediction (for deterministic AE the variance is set to 0).
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Table 7.4: Link Rank on Three Datasets

Method SAE SDAE VAE gamma NPN Gaussian NPN Poisson NPN
citeulike-a 1104.7 992.4 980.8 851.7 (935.8) 750.6 (823.9) 690.9 (5389.7)
citeulike-t 2109.8 1356.8 1599.6 1342.3 (1400.7) 1280.4 (1330.7) 1354.1 (9117.2)
arXiv 4232.7 2916.1 3367.2 2796.4 (3038.8) 2687.9 (2923.8) 2684.1 (10791.3)

We use links among 80% of the nodes (documents) to train the Bayesian LR and

use other links as the test set. link rank and AUC (area under the ROC curve) are

used as evaluation metrics. The link rank is the average rank of the observed links

from test nodes to training nodes. We compute the AUC for every test node and

report the average values. By definition, lower link rank and higher AUC indicate

better predictive performance and imply more powerful representations.
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Figure 7.3:
Reconstruction error and
estimated uncertainty for
each data point in
citeulike-a.

Table 7.4 shows the link rank for different models. For

fair comparison we also try all baselines with double budget (a

structure of B-200-50) and report whichever has higher accuracy.

As we can see, by treating representations as distributions rather

than points in a vector space, NPN is able to achieve much

lower link rank than all baselines, including VAE with variance

information. The numbers in the brackets show the link rank of

NPN if we discard the variance information. The performance

gain from variance information verifies the effectiveness of the variance (uncertainty)

estimated by NPN. Among different variants of NPN, the Gaussian NPN seems to

perform better in datasets with fewer words like citeulike-t (only 18.8 words per

document). The Poisson NPN, as a more natural choice to model text, achieves

the best performance in datasets with more words (citeulike-a and arXiv). The

performance in AUC is consistent with that in terms of the link rank (see Section B.4

of the appendix). To further verify the effectiveness of the estimated uncertainty, we

plot the reconstruction error and the variance o
(L)
s 1T for each data point of citeulike-a

in Figure 7.3. As we can see, higher uncertainty often indicates not only higher

reconstruction error E but also higher variance in E.

7.5 Conclusion

We have introduced a family of models, called natural-parameter networks, as a

novel class of probabilistic NN to combine the merits of NN and PGM. NPN regards

the weights and neurons as arbitrary exponential-family distributions rather than just

point estimates or factorized Gaussian distributions. Such flexibility enables richer

descriptions of hierarchical relationships among latent variables and adds another
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degree of freedom to customize NN for different types of data. Efficient sampling-

free backpropagation-compatible algorithms are designed for the learning of NPN.

Experiments show that NPN achieves state-of-the-art performance on classification,

regression, and representation learning tasks. As possible extensions of NPN, it

would be interesting to connect NPN to arbitrary PGM to form fully Bayesian deep

learning models [127,128], allowing even richer descriptions of relationships among

latent variables. It is also worth noting that NPN cannot be defined as generative

models and, unlike PGM, the same NPN model cannot be used to support multiple

types of inference (with different observed and hidden variables). We will try to

address these limitations in our future work.
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Chapter 8

Conclusion and Future Work

In this thesis, we start with the principled probabilistic framework (BDL) we

proposed to bridge the gap between perception and inference/reasoning. The moti-

vation is that perception and inference/reasoning are often coupled in real life. It is

hence natural to consider them in a single principled framework/model rather than

handle them separately. Moreover, since the world is intrinsically probabilistic, a

probabilistic framework, as opposed to a deterministic one, is preferred. In Chapter 3,

we discussed in detail the formal PGM formulation for a BDL model, different sets of

variables in BDL, different choices of variance, and the i.i.d. requirement to ensure

efficient parallel computation when training BDL models.

Note that BDL is a rather general framework which can potentially inspire

concrete models and applications in various areas. After the introduction of the

proposed general framework, we went on to discuss the applications of BDL in

different fields and our proposal of different learning algorithms for different models.

Specifically, we first discuss the application of BDL on recommender systems in

Chapter 4, where we present how to perform probabilistic feedforward and recurrent

deep learning in a CF-based setting. The two models we devised, CDL and CRAE,

are the first hierarchical Bayesian models to bridge the gap between state-of-the-

art deep learning models (both feedforward and recurrent ones) and recommender

systems. Due to its high accuracy, simplicity, and generality, various models have

been proposed to tackle the problem of deep recommender systems based on CDL

and CRAE [128].

Besides using the probabilistic deep learning models as a prior for BDL models, we

also explored using them as the downstream parts of the BDL models and imposing

another PGM prior on the deep learning components. This way, we can construct
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unsupervised learning models (e.g., topic models) under the BDL framework. For

example, in a BDL-based topic model, the probabilistic deep model will have direct

access to the text information and other constraints/information can be attached to

the model in a way similar to traditional topic models such as LDA. In this thesis,

we explore this formulation by designing a deep relational topic model, RSDAE

(Chapter 5), to perform unsupervised representation learning (and topic modeling)

with any available relational information. We then verified the quality of the learned

representation with a tag recommendation task.

Although RSDAE can perform representation learning with relational informa-

tion, it has two drawbacks: (1) RSDAE uses the relational information as a prior

(specifically, it uses the Laplacian matrix of the network data) and it is not clear

how to perform link prediction in a principled way using the model. (2) Similar to

CDL and CRAE, RSDAE uses MAP inference and hence fails to unleash the full

potential of a Bayesian model. RDL in Chapter 6 addresses these two problems by

providing a new model with a GVI learning algorithm. The prediction produced

by GVI would simultaneously consider both mean and variance (confidence) of the

prediction, which is more accurate and robust, especially in presence of noisy and/or

insufficient data.

As mentioned in Chapter 1, the Bayesian treatment of BDL-based models builds

on efficient Bayesian learning of both the deep neural networks and the traditional

PGMs acting as the task-specific components. Bayesian learning of PGMs has

been explored relatively thoroughly in the past decades. On the contrary, although

research on Bayesian learning of neural networks started more than two decades ago,

it is not until recently that it has been made more practical. Even so, there are still

several outstanding problems remaining to be addressed: (1) most of these methods

require sampling either at training time [5,17,42] or at test time [17], incurring much

higher cost than a ‘vanilla’ NN; (2) as mentioned in [5], methods based on online

EP or VI do not involve sampling, but they need to compute the predictive density

by integrating out the parameters, which is computationally inefficient; (3) these

methods assume Gaussian distributions for the weights and neurons, allowing no

flexibility to customize different distributions according to the data as is done in

PGM. Chapter 7 then devises a light-weight Bayesian treatment for deep neural

networks that is able to address the above limitations and subsequently facilitate

more efficient training in BDL models.

As future work, an interesting direction would be to explore BDL’s application on

more complex problems where the perception and reasoning are much more difficult
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than those in recommender systems or link prediction (e.g., the medical diagnosis

problem discussed in Chapter 1). As mentioned before, our discussion on BDL

focuses on directed PGMs. It would be natural to extend our framework and models

to work on both directed and undirected PGMs.

112



PhD’s Publications

Thesis related publications

Chapter 3

• Hao Wang and Dit-Yan Yeung. Towards Bayesian deep learning: A framework

and some existing methods. in TKDE 2016.

Chapter 4

• Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning

for recommender systems. in KDD 2015.

• Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Collaborative recurrent au-

toencoder: Recommend while learning to fill in the blanks. in NIPS 2016.

Chapter 5

• Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational stacked denoising

autoencoder for tag recommendation. in AAAI 2015.

Chapter 6

• Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational deep learning: A

deep latent variable model for link prediction. in AAAI 2017.

Chapter 7

• Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Natural parameter networks:

a class of probabilistic neural networks. in NIPS 2016.

113



Appendix A

Multi-Relational SDAE

Here we present a generalized version of RSDAE called multi-relational stacked

denoising autoencoder (MRSDAE). This generalization allows the new model to

handle multi-relational data. We assume that there are Q types of relational data (Q

networks) and use q to denote any one type. The graphical model of MRSDAE is

shown in Figure A.1 and the generative process is listed as follows:

1. For each type of relational data (each of the Q networks), draw the rela-

tional latent matrix S(q) = [s
(q)
1 , s

(q)
2 , · · · , s(q)

J ] from a matrix variate normal

distribution [44]:

S(q) ∼ NK,J(0, IK ⊗ (λlLaq)
−1). (A.1)

2. For layer l of the SDAE network where l = 1, 2, . . . , L
2
− 1,

(a) For each column n of the weight matrix Wl, draw Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).
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3. For layer L
2

of the SDAE network, draw the representation vector for item j

from the product of Q+ 1 Gaussians (PoG) [36]:

XL
2
,j∗ ∼ PoG(σ(XL

2
−1,j∗Wl + bl), (s

1
j)
T , . . . , (sQj )T ,

λ−1
s IK , λ

−1
r IK , . . . , λ

−1
r IK). (A.2)

4. For layer l of the SDAE network where l = L
2

+ 1, L
2

+ 2, . . . , L,

(a) For each column n of the weight matrix Wl, draw Wl,∗n ∼ N (0, λ−1
w IKl).

(b) Draw the bias vector bl ∼ N (0, λ−1
w IKl).

(c) For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl).

5. For each item j, draw a clean input

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IB).

Here K = KL
2

is the dimensionality of the learned representation vector for each item.

S(q) denotes the K × J relational latent matrix in which column j is the relational

latent vector s
(q)
j for item j. Note that NK,J(0, IK ⊗ (λlLaq)

−1) in (1) is a matrix

variate normal distribution defined as [44]:

p(S(q)) = NK,J(0, IK ⊗ (λlLaq)
−1)

=
exp{tr[−λl

2
S(q)Laq(S

(q))T ]}
(2π)JK/2|IK |J/2|λlLaq|−K/2

, (A.3)

where the operator ⊗ denotes the Kronecker product of two matrices [44], tr(·)
denotes the trace of a matrix, and Laq is the Laplacian matrix incorporating the

qth type of relational data. Laq = D(q) − A(q), where D(q) is a diagonal matrix

whose diagonal elements D
(q)
ii =

∑
j A

(q)
ij and A(q) is the adjacency matrix of the

qth type of relational data with binary entries indicating the links (or relations)

between items. A
(q)
jj′ = 1 indicates that there is a link between item j and item

j′ and A
(q)
jj′ = 0 otherwise. Equation (A.2) denotes the product of the Gaussian

N (σ(XL
2
−1,j∗Wl+bl), λ

−1
s IK) and Q Gaussians of the form N ((s

(q)
j )T , λ−1

r IK), which

is also a Gaussian [36].

According to the generative process above, maximizing the posterior probability

is equivalent to maximizing the joint log-likelihood of {Xl}, Xc, {S(q)}, {Wl}, and
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Figure A.1: Graphical model of MRSDAE when L = 4 and there are two
types of relational data. λs is not shown here to prevent clutter.

{bl} given λs, λw, λl, λr, and λn:

L =− λl
2

∑
q

tr(S(q)Laq(S
(q))T )

− λr
2

∑
q

∑
j

‖((s(q)
j )T −XL

2
,j∗)‖2

2

− λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖2
2

− λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖2
2.

Similar to the generalized SDAE, taking λs to infinity, the joint log-likelihood

becomes:

L =− λl
2

∑
q

tr(S(q)Laq(S
(q))T )

− λr
2

∑
q

∑
j

‖((s(q)
j )T −XL

2
,j∗)‖2

2

− λw
2

∑
l

(‖Wl‖2
F + ‖bl‖2

2)

− λn
2

∑
j

‖XL,j∗ −Xc,j∗‖2
2, (A.4)
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where Xl,j∗ = σ(Xl−1,j∗Wl + bl). Note that by simple manipulation, we have

tr(S(q)Laq(S
(q))T ) =

1

2

J∑
j=1

J∑
j′=1

Ajj′‖S(q)
∗j − S

(q)
∗j′‖

2 (A.5)

=
1

2

J∑
j=1

J∑
j′=1

[Ajj′

K∑
k=1

(S
(q)
kj − S

(q)
kj′)

2]

=
1

2

K∑
k=1

[
J∑
j=1

J∑
j′=1

Ajj′(S
(q)
kj − S

(q)
kj′)

2]

=
K∑
k=1

(S
(q)
k∗ )TLaqS

(q)
k∗ ,

where S
(q)
r∗ denotes the rth row of S(q) and S

(q)
∗c denotes the cth column of S(q). As

we can see, maximizing −λl
2

tr((S(q))TLaqS
(q)) is equivalent to making s

(q)
j closer to

s
(q)
j′ if item j and item j′ are linked (namely Ajj′ = 1).

The learning procedure of MRDSAE can also be derived similarly.
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Supplementary Materials for NPN

B.1 Proof of Theorem 2

Theorem 2. Assume an exponential-family distribution po(x|η) = h(x)g(η) exp{ηTu(x)},
where the vector u(x) = (u1(x), u2(x), . . . , uM(x))T (M is the number of natural pa-

rameters). If activation function v(x) = r − q exp(−τui(x)) is used, the first two

moments of v(x),
∫
po(x|η)v(x)dx and

∫
po(x|η)v(x)2dx, can be expressed in closed

form. Here i ∈ {1, 2, . . . ,M} and r, q, and τ are constants.

Proof. We first let η = (η1, η2, . . . , ηM), η̃ = (η1, η2, . . . , ηi − τ, . . . , ηM), and η̂ =

(η1, η2, . . . , ηi − 2τ, . . . , ηM). The first moment of v(x) is

E(v(x)) =

∫
po(x|η)(r − q exp(−τui(x)))dx

= r − q
∫
h(x)g(η) exp{ηTu(x)− τui(x)}dx

= r − q
∫
h(x)

g(η)

g(η̃)
g(η̃) exp{η̃Tu(x)}dx

= r − q g(η)

g(η̃)

∫
h(x)g(η̃) exp{η̃Tu(x)}dx

= r − q g(η)

g(η̃)
.
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Figure B.1: Activation functions for the gamma distribution (left), the
beta distribution (middle), and the Rayleigh distribution (right).

Similarly the second moment

E(v(x)2) =

∫
po(x|η)(r − q exp(−τui(x)))2dx

=

∫
po(x|η)(r2 + q2 exp(−2τui(x))− 2rq exp(−τui(x)))dx

= r2
∫
po(x|η)dx+ q2

∫
h(x)g(η) exp{ηTu(x)− 2τui(x)}dx

− 2rq

∫
h(x)g(η) exp{ηTu(x)− τui(x)}dx

= r2 + q2
∫
h(x)g(η) exp{η̂Tu(x)}dx− 2rq

∫
h(x)g(η) exp{η̃Tu(x)}dx

= r2 + q2
∫
h(x)

g(η)

g(η̂)
g(η̂) exp{η̃Tu(x)}dx− 2rq

∫
h(x)

g(η)

g(η̃)
g(η̃) exp{η̃Tu(x)}dx

= r2 + q2
g(η)

g(η̂)

∫
h(x)g(η̂) exp{η̃Tu(x)}dx− 2rq

g(η)

g(η̃)

∫
h(x)g(η̃) exp{η̃Tu(x)}dx

= r2 + q2
g(η)

g(η̂)
− 2rq

g(η)

g(η̃)
.

B.2 Exponential-Family Distributions and Acti-

vation Functions

In this section we provide a list of exponential-family distributions with corre-

sponding activation functions that could lead to close-form expressions of the first two

moments of v(x), namely E(v(x)) and E(v(x)2). With Theorem 2, we only need to

find the constants (r, q, and τ) that make v(x) = r − q exp(−τui(x)) monotonically

increasing and bounded.

As mentioned in Chapter 7, we use the activation function v(x) = r(1−exp(−τx))

for the gamma NPN and the Poisson NPN. Figure B.1(left) plots this function with

different τ when r = 1. As we can see, this function has a similar shape with the

positive half of v(x) = tanh(x) (the negative part is irrelevant because both the
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gamma distribution and the Poisson distribution have support over positive values

only). Note that the activation function v(x) = 1 − exp(−1.5x) is very similar to

v(x) = tanh(x).

For beta distributions, since the support set is (0, 1) the domain of the activation

function is also (0, 1). In this case v(x) = qxτ is a reasonable activation function

when τ ∈ (0, 1) and q = 1. Figure B.1(middle) shows this function with differnt τ

when q = 1. Since we expect the nonlinearly transformed distribution to be another

beta distribution, the domain of the function should be (0, 1) and the field should be

[0, 1]. With these criteria, v(x) = 1.3 tanh(x) might be a better activation function

than v(x) = tanh(x). As shown in the figure, different τ leads to different shapes of

the function.

For Rayleigh distributions with support over positive reals, v(x) = r − qe−τx2
is

a proper activation function with the domain x ∈ R+. Figure B.1(right) plots this

function with different τ when r = q = 1. We can see that this function also has a

similar shape with the positive half of v(x) = tanh(x).

B.2.1 Gamma Distributions

For gamma distributions with (v(x) = r(1− exp(−τx)), as mentioned in Chapter

7,

am =

∫
po(oj|oc,od)v(o)do = r

∫ +∞

0

1

Γ(oc)
ooc
d ◦ ooc−1e−od◦o(1− e−τo)do

= r(1− ooc
d

Γ(oc)

∫ +∞

0

ooc−1e−(od+τ)◦odo)

= r(1− ooc
d

Γ(oc)
◦ Γ(oc) ◦ (od + τ)−oc)

= r(1− (
od

od + τ
)oc).

120



Section B.2 Hao Wang

Similarly we have

as =

∫
po(oj|oc,od)v(o)2do− a2

m

= r2

∫ +∞

0

1

Γ(oc)
ooc
d ◦ ooc−1e−od◦o(1− 2e−τo + e−2τo)do− a2

m

= r2(1− 2
ooc
d

Γ(oc)
◦ Γ(oc) ◦ (od + τ)−oc +

ooc
d

Γ(oc)
◦ Γ(oc) ◦ (od + 2τ)−oc)− a2

m

= r2(1− 2(
od

od + τ
)oc + (

od
od + 2τ

)oc)− a2
m

= r2((
od

od + 2τ
)oc − (

od
od + τ

)2oc).

Equivalently we can obtain the same am and as by following Theorem 2. For the

gamma distribution

p(x|c, d) =
dc

Γ(c)
exp{(c− 1) log x+ (−b)x}.

Thus we have η = (c− 1,−d)T , u(x) = (log x, x)T , and g(η) = dc

Γ(c)
. Using v(x) =

r(1− exp(−τx)) implies g(η̃) = (d+τ)c

Γ(c)
and g(η̂) = (d+2τ)c

Γ(c)
. Hence we have

am = r − rg(η)

g(η̃)
= r(1− (

od
od + τ

)oc),

and the variance

as = r2 + r2 g(η)

g(η̂)
− 2r2 g(η)

g(η̃)
− r2(1− g(η)

g(η̃)
)2

= r2((
od

od + 2τ
)oc − (

od
od + τ

)2oc).

B.2.2 Poisson Distributions

For Poisson distributions with v(x) = r(1−exp(−τx)), using the Taylor expansion

of exp(exp(−τ)λ) with respect to λ,

exp(exp(−τ)λ) =
+∞∑
x=0

λx exp(−τx)

x!
,
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we have

am = r
+∞∑
x=0

oxc exp(−oc)

x!
(1− exp(−τx))

= r(
+∞∑
x=0

oxc exp(−oc)

x!
−

+∞∑
x=0

oxc exp(−oc)

x!
exp(−τx))

= r(1− exp(−oc)
+∞∑
x=0

oxc exp(−τx)

x!
)

= r(1− exp(−oc) exp(exp(−τ)oc))

= r(1− exp((exp(−τ)− 1)oc)).

Similarly, we have

as = r2
+∞∑
x=0

ox
c exp(−oc)

x!
(1− exp(−τx))2 − a2

m

= r2
+∞∑
x=0

ox
c exp(−oc)

x!
(1− 2 exp(−τx) + exp(−2τx))− a2

m

= r2(

+∞∑
x=0

ox
c exp(−oc)

x!
− 2

+∞∑
x=0

ox
c exp(−oc)

x!
exp(−τx) +

+∞∑
x=0

ox
c exp(−oc)

x!
exp(−2τx))− a2

m

= r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc).

Equivalently we can follow Theorem 2 to obtain am and as. For the Poisson

distribution

p(x|c) =
1

x!
exp(−c) exp{x log c}

Thus we have η = log c, u(x) = x, and g(η) = exp(−c). Using v(x) = r(1−exp(−τx))

implies g(η̃) = exp(− exp(−τ)c) and g(η̂) = exp(− exp(−2τ)c). Hence we have

am = r − rg(η)

g(η̃)

= r(1− exp((exp(−τ)− 1)oc)),

and the variance

as = r2 + r2 g(η)

g(η̂)
− 2r2 g(η)

g(η̃)
− r2(1− g(η)

g(η̃)
)2

= r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc)).
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B.2.3 Gaussian Distributions

In this subsection, we provide detailed derivation of (am, as) for Gaussian distri-

butions.

Sigmoid Activation

We start by proving the following theorem:

Theorem 3. Consider a univariate Gaussian distribution N (x|µ, σ2) and the probit

function Φ(x) =
∫ x
−∞N (θ|0, 1)dθ. If ζ2 = π

8
, for any constants a and b, the following

equation holds: ∫
Φ(ζa(x+ b)N (x|µ, σ2)dx = Φ(

ζa(µ+ b)

(1 + ζ2a2σ2)
1
2

). (B.1)

Proof. Making the change of variable x = µ+ σz, we have

I =

∫
Φ(ζa(x+ b)N (x|µ, σ2)dx

=

∫
Φ(ζa(µ+ σz + b))

1

(2πσ)
1
2

exp{−1

2
z2}σdz.

Taking the derivative with respect to µ,

∂I
∂µ

=
ζa

2π

∫
exp{−1

2
z2 − 1

2
ζ2a2(µ+ σz + b)2}dz

=
ζa

2π

∫
exp{−1

2
z2 − 1

2
ζ2a2(µ2 + σ2z2 + b2 + 2µσz + 2µb+ 2σzb)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)(z2 +

2ζ2a2σ(µ+ b)

1 + ζ2a2σ2
z +

(µ2 + b2 + 2µb)ζ2a2

1 + ζ2a2σ2
)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 − ζ4a4σ2(µ+ b)2

(1 + ζ2a2σ2)2
+

(µ+ b)2ζ2a2

1 + ζ2a2σ2
)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 +

1

2

ζ4a4σ2(µ+ b)2

1 + ζ2a2σ2
− 1

2
(µ+ b)2ζ2a2)}dz

=
ζa

2π

∫
exp{−1

2
(1 + ζ2a2σ2)((z +

ζ2a2σ(µ+ b)

1 + ζ2a2σ2
)2 − 1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
)}dz

=
1

(2π)
1
2

ζa

(1 + ζ2a2σ2)
1
2

exp{−1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
}.

Taking derivative of the right-hand side of Equation (B.1) also gives

1

(2π)
1
2

ζa

(1 + ζ2a2σ2)
1
2

exp{−1

2

(µ+ b)2ζ2a2

1 + ζ2a2σ2
},
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which means the derivatives of the left and right hand sides of Equation (B.1) with

respect to µ are equal. When µ approaches negative infinity, the derivatives go to

zero, which implies that the constant of the integration is zero. Hence Equation

(B.1) holds.

As mentioned before (with a slight abuse of notation on σ), if the sigmoid

activation v(x) = σ(x) = 1
1+exp(−x)

is used,

am =

∫
N (o|oc, diag(od)) ◦

1

1 + exp(−o)
do

≈
∫
N (o|oc, diag(od)) ◦ Φ(ζo)do. (B.2)

Following Theorem 3 with a = 1 and b = 0, we have

am ≈ Φ(
oc

(ζ−2 + od)
1
2

)

= σ(
oc

(1 + ζ2od)
1
2

).

For the variance,

as ≈
∫
N (o|oc, diag(od)) ◦ Φ(ζα(o + β))do− a2

m

= σ(
α(om + β)

(1 + ζ2α2os)1/2
)− a2

m. (B.3)

Equation (B.3) holds due to Theorem 3 with a = α = 4 − 2
√

2 and b = β =

− log(
√

2 + 1).
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Hyperbolic Tangent Activation

If the tanh activation v(x) = tanh(x) is used, since tanh(x) = 2σ(2x) − 1, we

have

am =

∫
N (o|oc, diag(od)) ◦ (2σ(2o)− 1)do

= 2

∫
N (o|oc, diag(od)) ◦ σ(2o)do− 1

≈ 2

∫
N (o|oc, diag(od)) ◦ Φ(2ζo)do− 1

= 2Φ(
2ζoc

(1 + 4ζ2od)
1
2

)− 1 (B.4)

= 2σ(
oc

(0.25 + ζ2od)
1
2

)− 1,

where Equation (B.4) is due to Theorem 3 with a = 2 and b = 0. For the variance of

a:

as =

∫
N (o|oc, diag(od)) ◦ (2σ(2o)− 1)2do− a2

m

=

∫
N (o|oc, diag(od)) ◦ (4σ(2o)2 − 4σ(2o) + 1)do− a2

m

≈
∫
N (o|oc, diag(od)) ◦ (4Φ(ζα(o + β))− 4σ(2o) + 1)do− a2

m

= 4σ(
α(oc + β)

(1 + ζ2α2od)
1
2

)− a2
m − 2am − 1, (B.5)

where Equation (B.5) follows from Theorem 3 with a = α = 8− 4
√

2 and b = β =

−0.5 log(
√

2 + 1).

ReLU Activation

If the ReLU activation v(x) = max(0, x) is used, we can use the techniques

in [31] to obtain the first two moments of z = max(z1, z2) where z1 ∼ N (µ1, σ
2
1) and

z2 ∼ N (µ2, σ
2
2). Specifically,

E(z) = µ1Φ(γ) + µ2Φ(−γ) + νφ(γ)

E(z2) = (µ2
1 + σ2

1)Φ(γ) + (µ2
2 + σ2

2)Φ(−γ) + (µ1 + µ2)νφ(γ),
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where Φ(x) =
∫ x
−∞N (θ|0, 1)dθ, φ(x) = N (x|0, 1), ν =

√
σ2

1 + σ2
2, and γ = µ1−µ2

ν
. If

N (µ1, σ
2
1) = N (c, d) and N (µ2, σ

2
2) = N (0, 0), we recover the probabilistic version

of ReLU. In this case,

E(z) = Φ(
c√
d

)c+

√
d

2π
exp{−1

2

c2

d
}

D(z) = E(z2)− E(z)2 = Φ(
c√
d

)(c2 + d) +
c
√
d√

2π
exp{−1

2

c2

d
} − c2.

Hence we have the following equations as in the main text:

a(l)
m = Φ(om ◦ o(l)

s

− 1
2 ) ◦ om +

√
os√
2π
◦ exp(−om

2

2os
)

a(l)
s = Φ(om ◦ o(l)

s

− 1
2 ) ◦ (om

2 + os) +
o

(l)
m ◦
√

os√
2π

◦ exp(−om
2

2os
)− a2

m.

B.3 Mapping Function for Poisson Distributions

Since the mapping function involves Gaussian approximation to a Poisson distri-

bution, we start with proving the connection between Gaussian distributions and

Poisson distributions.

Lemma 1. Assume Y is a Poisson random variable with mean c and variance c. If

X1, X2, . . . , Xc are independent Poisson random variables with mean 1, we have:

Y =
c∑
i=1

Xi

Proof. We can use the concept of moment generating functions (i.e., two distributions

are identical if they have exactly the same moment generating function), which is

defined as M(t) = E(exp(tZ)) for a random variable Z, to prove the lemma. The

moment generating function for a Poisson random variable with mean c and variance

c is:

M1(t) = exp(c(exp(t)− 1)).
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On the other hand, the moment generating function for
c∑
i=1

Xi is:

M2(t) = E(exp(t
c∑
i=1

Xi))

= E(
c∏
i=1

exp(tXi))

=
c∏
i=1

E(exp(tXi)) (B.6)

=
c∏
i=1

exp(exp(t)− 1) (B.7)

= exp(c(exp(t)− 1))

= M1(t),

where Equation (B.6) is due to the fact thatX1, X2, . . . , Xc are independent. Equation

(B.7) is the result of using the moment generating functions of Poisson distributions.

Since
c∑
i=1

Xi has exactly the same moment generating function as a Poisson random

variable with mean c and variance c, by definition of Y , we have:

Y =
c∑
i=1

Xi

Theorem 4. A Poisson distribution with mean c and variance c can be approximated

by a Gaussian distribution N (c, c) if c is sufficiently large.

Proof. We first use Y to denote the random variable corresponding to the Poisson

distribution with mean c and variance c. According to Lemma 1, we have Y =
c∑
i=1

Xi

where X1, X2, . . . , Xc are independent Poisson random variables with mean 1. Hence,

Y − c√
c

=

c∑
i=1

Xi − c
√
c

=
√
c(

1

c

c∑
i=1

Xi − 1),
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where 1
c

c∑
i=1

Xi is the sample mean. By the central limit theorem, we know that if c is

sufficiently large,
√
c(1
c

c∑
i=1

Xi− 1) can be approximated by the Gaussian distribution

N (0, 1). Thus Y can be approximated by the Gaussian distribution N (c, c).

Note that although c is a nonnegative integer above, the proof can be easily

generalized to the case in which c is a nonnegative real value.

During the feedforward computation of the Poisson NPN, after obtaining the

mean o
(l)
m and variance o

(l)
s of the linearly transformed distribution over o(l), we

map them back to the proxy natural parameters o
(l)
c . Unfortunately the mean and

variance of a Poisson are the same, which is obviously not the case for o
(l)
m and

o
(l)
s . Here we propose to find o

(l)
c by minimizing the KL divergence of the factorized

Poisson distribution p(o(l)|o(l)
c ) and the Gaussian distribution N (o

(l)
m , diag(o

(l)
s ))1.

Since the direct KL divergence involves the computation of an infinite series in

the entropy term of the Poisson distribution, closed-form solutions are not available.

To address the problem, we use a Gaussian distribution N (o
(l)
c , diag(o

(l)
c )) as a

proxy of the Poisson distribution with the mean o
(l)
c (which is justified by Theorem

4)2. Specifically, we aim to find a Gaussian distribution N (o
(l)
c , diag(o

(l)
c )) to best

approximate N (o
(l)
m , diag(o

(l)
s )) and directly use o

(l)
c in the new Gaussian as the result

of mapping.

For simplicity, we consider the univariate case where we aim to find a Gaussian

distribution N (c, c) to approximate N (m, s). The KL divergence between N (c, c)

and N (m, s)

DKL(N (c, c)‖N (m, s)) =
1

2
(
c

s
+

(c−m)2

s
− 1 + log s− log c),

which is convex with respect to c > 0. We set the gradient of DKL(N (c, c)‖N (m, s))

with respect to c as 0 and solve for c, giving

c =
2m− 1±

√
(2m− 1)2 + 8s

4
.

1The relationships between Poisson distributions and Gaussian distributions are described in

Theorem 4. The theorem, however, cannot be directly used here since o
(l)
m and o

(l)
s are not identical.

This is why we have to resort to the KL divergence.
2Note that for Theorem 4 to be valid, c has to be sufficiently large, which is why we do

not normalize the word counts as preprocessing and why we use a large r for the activation
v(x) = r(1− exp(−τx)).
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Table B.1: AUC on Three Datasets

Method SAE SDAE VAE gamma NPN Gaussian NPN Poisson NPN
Citeulike-a 0.915 0.917 0.929 0.938 0.951 0.956
Citeulike-t 0.891 0.920 0.922 0.936 0.940 0.934
arXiv 0.811 0.840 0.834 0.861 0.878 0.879

Since in Poisson distributions, c is always positive, there is only one solution for c:

c =
2m− 1 +

√
(2m− 1)2 + 8s

4
.

Thus the mapping is

o(l)
c =

1

4
(2o(l)

m − 1 +

√
(2o

(l)
m − 1)2 + 8o

(l)
s ).

B.4 AUC for Link Prediction and Different Data

Splitting

In this section, we show the AUC for different models on the link prediction

task. As we can see in Table B.1 above, the result in AUC is consistent with that

in link rank (as shown in Table 7.4). NPN is able to achieve much higher AUC

than SAE, SDAE, and VAE. Among different variants of NPN, the Gaussian NPN

seems to perform better in datasets with fewer words like Citeulike-t (18.8 words

per document). The Poisson NPN, as a more natural choice to model text, achieves

the best performance in datasets with more words (Citeulike-a with 66.6 words per

document and arXiv with 88.8 words per document).

For the link prediction task, we also try to split the data in a different way and

compare the performance of different models. Specifically, we randomly select 80% of

the observed links (rather than nodes) as the training set and use the others as the

test set. The results are consistent with those for the original data-splitting method.

B.5 Hyperparameters and Preprocessing

In this section we provide details on the hyperparameters and preprocessing of

the experiments as mentioned in Chapter 7.
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B.5.1 Toy Regression Task

For the toy 1d regression task, we use networks with one hidden layer containing

100 neurons and ReLU activation, as in [5, 48]. For the Gaussian NPN, we use the

KL divergence loss and isotropic Gaussian priors with precision 10−4 for the weights

(and biases). The same priors are used in other experiments.

B.5.2 MNIST Classification

For preprocessing, following [5, 17], pixel values are normalized to the range [0, 1].

For the NPN variants, we use these hyperparameters: minibatch size 128, number of

epochs 2000 (the same as BDK). For the learning rate, AdaDelta is used. Note that

since NPN is dropout-compatible, we can use dropout (with nearly no additional

cost) for effective regularization. The training and testing of dropout NPN are similar

to those of the vanilla dropout NN.

B.5.3 Second-Order Representation Learning

For all models, we preprocess the BOW vectors by normalizing them into the range

[0, 1]. Although theoretically Poisson NPN does not need any preprocessing since

Poisson distributions naturally model word counts, in practice, we find normalizing

the BOW vectors will increase both stability during training and the predictive

performance. For simplicity, in the Poisson NPN, r is set to 1 and τ = 0.1 (these two

hyperparameters can be tuned to further improve performance). For the Gaussian

NPN, sigmoid activation is used. The other hyperparameters of NPN are the same

as in the MNIST experiments.

B.6 Details on Variants of NPN

B.6.1 Gamma NPN

In gamma NPN, parameters W
(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d can be learned following

Algorithm 2. Specifically, during the feedforward phase, we will compute the error E

given the input a
(0)
m = x (a

(0)
s = 0) and the parameters (W

(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d ).

With the mean a
(l−1)
m and variance a

(l−1)
s from the previous layer, o

(l)
m and o

(l)
s can
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be computed according to Chapter 7, where

(W(l)
m ,W

(l)
s ) = (W(l)

c ◦W
(l)
d

−1
,W(l)

c ◦W
(l)
d

−2
), (b(l)

m ,b
(l)
s ) = (b(l)

c ◦ b
(l)
d

−1
,b(l)

c ◦ b
(l)
d

−2
).

(B.8)

After that we can get the proxy natural parameters using (o
(l)
c ,o

(l)
d ) = (o

(l)
m ◦

o
(l)
s

−1
,o

(l)
m

2
◦ o

(l)
s ).

With the proxy natural parameters for the gamma distributions over o(l), the

mean a
(l)
m and variance a

(l)
s for the nonlinearly transformed distribution over a(l)

would be obtained. As mentioned before, using traditional activation functions like

tanh v(x) = tanh(x) and ReLU v(x) = max(0, x) could not give us closed-form

solutions for the integrals. Following Theorem 2, closed-form solutions are possible

with v(x) = r(1 − exp(−τx)) (r = q and ui(x) = x) where r and τ are constants.

This function has a similar shape with the positive half of v(x) = tanh(x) with r as

the saturation point and τ controlling the slope.

With the computation procedure for the feedforward phase, the gradients of E

with respect to parameters W
(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d can be derived and used for

backpropagation. Note that to ensure positive entries in the parameters we can use

the function k(x) = log(1 + exp(x)) or k(x) = exp(x− h). For example, we can let

b
(l)
c = log(1 + exp(b

(l)
c′ )) and treat b

(l)
c′ as parameters to learn instead of b

(l)
c .

We can add the KL divergence between the learned distribution and the prior

distribution on weights to the objective function to regularize gamma NPN. If we use

an isotropic Gaussian prior N (0, λ−1
s ) for each entry of the weights, we can compute

the KL divergence for each entry (between Gam(c, d) and N (0, λ−1
s )) as:

KL(Gam(x|c, d)‖N (x|0, λ−1s ))

=

∫
Gam(x|c, d) logGam(x|c, d)dx−

∫
Gam(x|c, d) logN (x|0, λ−1s )

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λs

∫
dc

Γ(c)
xc+2−1 exp(−dx)dx

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λs

Γ(c+ 2)

Γ(c)

= − log Γ(c) + (c− 1)ψ(c) + log d− c+
1

2
log(2π)− 1

2
log λs +

1

2
λsc(c+ 1), (B.9)

where ψ(x) = d
dx

log Γ(x) is the digamma function.
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B.6.2 Gaussian NPN

For details on the Bayesian nonlinear transformation, please refer to Section

B.2.3 above. For the KL divergence between the learned distribution and the prior

distribution on weights, we can compute it as:

KL(N (x|c, d)‖N (x|0, λ−1
s )) =

1

2
(λs + λsc

2 − 1− log λs − log d), (B.10)

As we can see, the term −1
2

log d will help to prevent the learned variance d from

collapsing to 0 (in practice we can use 1
2
λd(d− h)2, where λd and h are hyperparam-

eters, to approximate this term for better numerical stability) and the term 1
2
c2 is

equivalent to L2 regularization. Similar to BDK, we can use a mixture of Gaussians

as the prior distribution.

B.6.3 Poisson NPN

The Poisson distribution, as another member of the exponential family, is often

used to model counts (e.g., number of events happened or number of words in a

document). Different from the previous distributions, it has support over nonnegative

integers. The Poisson distribution takes the form p(x|c) = cx exp(−c)
x!

with one single

natural parameter log c (we use c as the proxy natural parameter). It is this single

natural parameter that makes the learning of a Poisson NPN trickier. For text

modeling, assuming Poisson distributions for neurons is natural because they can

model the counts of words and topics (even super topics) in documents. Here we

assume a factorized Poisson distribution p(o(l)|o(l)
c ) =

∏
j p(o

(l)
j |o

(l)
c,j) and do the same

for a(l). To ensure having positive natural parameters we use gamma distributions

for the weights. Interestingly, this design of Poisson NPN can be seen as a neural

analogue of some Poisson factor analysis models [147].

Following Algorithm 2, we need to compute E during the feedforward phase given

the input a
(0)
m = x (a

(0)
s = 0) and the parameters (W

(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d ), the first

step being to compute the mean o
(l)
m and variance o

(l)
s . Since gamma distributions

are assumed for the weights, we can compute the mean and variance of the weights

as follows:

(W(l)
m ,W

(l)
s ) = (W(l)

c ◦W
(l)
d

−1
,W(l)

c ◦W
(l)
d

−2
), (b(l)

m ,b
(l)
s ) = (b(l)

c ◦ b
(l)
d

−1
,b(l)

c ◦ b
(l)
d

−2
).

(B.11)
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Having computed the mean o
(l)
m and variance o

(l)
s of the linearly transformed dis-

tribution over o(l), we map them back to the proxy natural parameters o
(l)
c . Un-

fortunately the mean and variance of a Poisson are the same, which is obviously

not the case for o
(l)
m and o

(l)
s . Hence we propose to find o

(l)
c by minimizing the

KL divergence of the factorized Poisson distribution p(o(l)|o(l)
c ) and the Gaussian

distribution N (o
(l)
m , diag(o

(l)
s )), resulting in the mapping (see Section B.3 for proofs

and justifications):

o(l)
c =

1

4
(2o(l)

m − 1 +

√
(2o

(l)
m − 1)2 + 8o

(l)
s ). (B.12)

After finding o
(l)
c , the next step in Algorithm 2 is to get the mean a

(l)
m and variance

a
(l)
s of the nonlinearly transformed distribution. As is the case for gamma NPN,

traditional activation functions will not give us closed-form solutions. Fortunately,

the activation v(x) = r(1− exp(−τx)) also works for Poisson NPN. Specifically,

am = r
+∞∑
x=0

oxc exp(−oc)

x!
(1− exp(−τx)) = r(1− exp((exp(−τ)− 1)oc)),

where the superscript (l) is dropped. Similarly, we have

as = r2(exp((exp(−2τ)− 1)oc)− exp(2(exp(−τ)− 1)oc)).

Full derivation is provided in Section B.2.2.

Once we go through L layers to get the proxy natural parameters o
(L)
c for the

distribution over o(L), the error E can be computed as the negative log-likelihood.

Assuming that the target output y has nonnegative integers as entries,

E = −1T (y ◦ log o(L)
c − o(L)

c − log(y!)).

For y with real-valued entries, the L2 loss could be used as the error E. Note that if

we use the normalized BOW as the target output, the same error E can be used as

the Gaussian NPN. Besides this loss term, we can add the KL divergence term in

Equation (B.9) to regularize Poisson NPN.

During backpropagation, the gradients are computed to update the parameters

W
(l)
c , W

(l)
d , b

(l)
c , and b

(l)
d . Interestingly, since o

(l)
c is guaranteed to be nonnegative,

the model still works even if we directly use W
(l)
m and W

(l)
s as parameters, though the

resulting models are not exactly the same. In the experiments, we use this Poisson
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NPN for a Bayesian autoencoder and feed the extracted second-order representations

into a Bayesian LR algorithm for link prediction.

B.7 Derivation of Gradients

In this section we list the gradients used in backpropagation to update the NPN

parameters.

B.7.1 Gamma NPN

In the following we assume an activation function of v(x) = r(1− exp(−τx)) and

use ψ(x) = d
dx

log Γ(x) to denote the digamma function. E is the error we want to

minimize.

E → o(L):

∂E

∂o
(L)
c

= ψ(o(L)
c )− log o

(L)
d − log y

∂E

∂o
(L)
d

= −o
(L)
c

o
(L)
d

+ y.

o(l) → a(l−1):

∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T
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a(l) → o(l):

∂E

∂o
(l)
c

=
∂E

∂a
(l)
m

◦ (−r( o
(l)
d

o
(l)
d + τ

)o
(l)
c ◦ log(

o
(l)
d

o
(l)
d + τ

))

+ r2 ∂E

∂a
(l)
s

((
o

(l)
d

o
(l)
d + 2τ

)o
(l)
c ◦ log(

o
(l)
d

o
(l)
d + 2τ

)− 2(
o

(l)
d

o
(l)
d + 2τ

)2o
(l)
c ◦ log(

o
(l)
d

o
(l)
d + 2τ

))

∂E

∂o
(l)
c

=
∂E

∂a
(l)
m

◦ (−ro(l)
c ◦ (

o
(l)
d

o
(l)
d + τ

)o
(l)
c −1 ◦ τ

(o
(l)
d + τ)2

)

+ r2 ∂E

∂a
(l)
s

◦ (o(l)
c ◦ (

o
(l)
d

o
(l)
d + 2τ

)o
(l)
c −1 ◦ 2τ

(o
(l)
d + 2τ)2

− 2o(l)
c ◦ (

o
(l)
d

o
(l)
d + τ

)2o
(l)
c −1 ◦ τ

(o
(l)
d + τ)2

).

o(l) →W(l),o(l) → b(l):

The gradients with respect to the mean-variance pairs:

∂E

∂W
(l)
m

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
m

∂E

∂W
(l)
s

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
m

=
∂E

∂o
(l)
m

∂E

∂b
(l)
s

=
∂E

∂o
(l)
s

The gradients with respect to the proxy natural parameters:

∂E

∂W
(l)
c

=
∂E

∂W
(l)
m

◦ 1

W
(l)
d

+
∂E

∂W
(l)
s

◦ 1

W
(l)
d

2

∂E

∂W
(l)
d

= − ∂E

∂W
(l)
m

◦ W
(l)
c

W
(l)
d

2 − 2
∂E

∂W
(l)
s

◦ W
(l)
c

W
(l)
d

3

∂E

∂b
(l)
c

=
∂E

∂b
(l)
m

◦ 1

b
(l)
d

+
∂E

∂b
(l)
s

◦ 1

b
(l)
d

2

∂E

∂b
(l)
d

= − ∂E

∂b
(l)
m

◦ b
(l)
c

b
(l)
d

2 − 2
∂E

∂b
(l)
s

◦ b
(l)
c

b
(l)
d

3
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B.7.2 Gaussian NPN

In the following we assume the sigmoid activation function and use cross-entropy

loss. Other activation functions and loss could be derived similarly. For the equations

below, α = 4− 2
√

2, β = − log(
√

2 + 1), ζ2 = π
8
, and κ(x) = (1 + ζ2x)−

1
2 .

E → o(L):

∂E

∂o
(L)
m

= (σ(κ(o(L)
s ) ◦ o(L)

m )− y) ◦ κ(o(L)
s )

∂E

∂o
(L)
s

= (σ(κ(o(L)
s ) ◦ o(L)

m )− y) ◦ o(L)
m ◦ (− π

16
(1 + πo(L)

s /8)−3/2).

o(l) → a(l−1):

∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T
.

a(l) → o(l):

∂E

∂o
(l)
m

=
∂E

∂a
(l)
m

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ κ(o(l)
s )

+ α
∂E

∂a
(l)
s

◦ dsigmoid(
α(o

(l)
m + β)

(1 + ζ2α2o
(l)
s )1/2

) ◦ (1 + ζ2α2o(l)
s )−1/2

− 2a(l)
m ◦

∂E

∂a
(l)
s

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ κ(o(l)
s )

∂E

∂o
(l)
s

=
∂E

∂a
(l)
m

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ o(l)
m ◦ (−1

2
ζ2(1 + ζ2o(l)

s )−3/2)

+
∂E

∂a
(l)
s

◦ dsigmoid(
α(o

(l)
m + β)

(1 + ζ2α2o
(l)
s )1/2

) ◦ (α(o(l)
m + β)) ◦ (−1

2
ζ2α2(1 + ζ2α2o(l)

s )−3/2)

− 2a(l)
m ◦

∂E

∂a
(l)
s

◦ dsigmoid(κ(o(l)
s ) ◦ o(l)

m ) ◦ o(l)
m ◦ (−1

2
ζ2(1 + ζ2o(l)

s )−3/2),

where dsigmoid(x) is the gradient of σ(x).
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o(l) →W(l),o(l) → b(l):

∂E

∂W
(l)
c

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
c

∂E

∂W
(l)
d

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
c

=
∂E

∂o
(l)
m

∂E

∂b
(l)
d

=
∂E

∂o
(l)
s

Note that we directly use the mean and variance as proxy natural parameters here.

B.7.3 Poisson NPN

In the following we assume the activation function v(x) = r(1− exp(τx)) and use

Poisson regression loss E = 1T (y ◦ log o
(L)
c − o

(L)
c − log(y!)) (the target output y is a

vector with nonnegative integer entries). Gamma distributions are used on weights.

E → o
(L)
c :

∂E

∂o
(L)
c

=
y

o
(L)
c

− 1.

o
(l)
c → o

(l)
m ,o

(l)
c → o

(l)
s :

∂E

∂o
(l)
m

=
∂E

o
(l)
c

◦ (
1

2
+

1

2
((2o(l)

m − 1)2 + 8o(l)
s )−

1
2 ◦ (2o(l)

m − 1))

∂E

∂o
(l)
s

=
∂E

o
(l)
c

◦ ((2o(l)
m − 1)2 + 8o(l)

s )−
1
2 .

o(l) → a(l−1):

∂E

∂a
(l−1)
m

=
∂E

∂o
(l)
m

W(l)
m

T
+ (

∂E

∂o
(l)
s

W(l)
s

T
) ◦ 2a(l−1)

m

∂E

∂a
(l−1)
s

=
∂E

∂o
(l)
s

W(l)
s

T
+

∂E

∂o
(l)
s

(W(l)
m ◦W(l)

m )
T
.
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a(l) → o
(l)
c :

∂E

∂o
(l)
c

= −r(exp(−τ)− 1)
∂E

∂a
(l)
m

◦ exp((exp(−τ)− 1)o(l)
c )

+ r2 ∂E

∂a
(l)
s

◦ ((exp(−2τ)− 1) exp((exp(−2τ)− 1)o(l)
c )

− 2(exp(−τ)− 1) exp(2(exp(−τ)− 1)o(l)
c ))

o(l) →W(l),o(l) → b(l):

The gradients with respect to the mean-variance pairs:

∂E

∂W
(l)
m

= a(l−1)
m

T ∂E

∂o
(l)
m

+ (a(l−1)
s

T ∂E

∂o
(l)
s

) ◦ 2W(l)
m

∂E

∂W
(l)
s

= a(l−1)
s

T ∂E

∂o
(l)
s

+ (a(l−1)
m ◦ a(l−1)

m )T
∂E

∂o
(l)
s

∂E

∂b
(l)
m

=
∂E

∂o
(l)
m

∂E

∂b
(l)
s

=
∂E

∂o
(l)
s

The gradients with respect to the proxy natural parameters:

∂E

∂W
(l)
c

=
∂E

∂W
(l)
m

◦ 1

W
(l)
d

+
∂E

∂W
(l)
s

◦ 1

W
(l)
d

2

∂E

∂W
(l)
d

= − ∂E

∂W
(l)
m

◦ W
(l)
c

W
(l)
d

2 − 2
∂E

∂W
(l)
s

◦ W
(l)
c

W
(l)
d

3

∂E

∂b
(l)
c

=
∂E

∂b
(l)
m

◦ 1

b
(l)
d

+
∂E

∂b
(l)
s

◦ 1

b
(l)
d

2

∂E

∂b
(l)
d

= − ∂E

∂b
(l)
m

◦ b
(l)
c

b
(l)
d

2 − 2
∂E

∂b
(l)
s

◦ b
(l)
c

b
(l)
d

3
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danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

In EMNLP, pages 1724–1734, 2014.

[30] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C

Courville, and Yoshua Bengio. A recurrent latent variable model for sequential

data. In NIPS, pages 2962–2970, 2015.

[31] Charles E Clark. The greatest of a finite set of random variables. Operations

Research, 9(2):145–162, 1961.

[32] Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, and Lise Getoor. Chance-

constrained programs for link prediction. In NIPS Workshop on Analyzing

Networks and Learning with Graphs, 2009.

[33] Otto Fabius and Joost R van Amersfoort. Variational recurrent auto-encoders.

arXiv preprint arXiv:1412.6581, 2014.

[34] F Dan Foresee and Martin T Hagan. Gauss-newton approximation to bayesian

learning. In IJCNN, volume 3, pages 1930–1935, 1997.

141



Section B.7 Hao Wang

[35] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation:

Insights and applications. In Deep Learning Workshop, ICML, 2015.

[36] M. J. F. Gales and S. S. Airey. Product of Gaussians for speech recognition.

CSL, 20(1):22–40, 2006.

[37] Zhe Gan, Changyou Chen, Ricardo Henao, David E. Carlson, and Lawrence

Carin. Scalable deep Poisson factor analysis for topic modeling. In ICML,

pages 1823–1832, 2015.

[38] Nikhil Garg and Ingmar Weber. Personalized, interactive tag recommendation

for flickr. In RecSys, pages 67–74, 2008.

[39] Kostadin Georgiev and Preslav Nakov. A non-iid framework for collaborative

filtering with restricted Boltzmann machines. In ICML, pages 1148–1156, 2013.

[40] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi.

A survey of statistical network models. Foundations and Trends in Machine

Learning, 2(2):129–233, 2010.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Book in

preparation for MIT Press, 2016.

[42] Alex Graves. Practical variational inference for neural networks. In NIPS,

pages 2348–2356, 2011.

[43] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber.

Connectionist temporal classification: labelling unsegmented sequence data

with recurrent neural networks. In ICML, pages 369–376, 2006.

[44] A.K. Gupta and D.K. Nagar. Matrix Variate Distributions. Chapman & Hal-

l/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman

& Hall, 2000.

[45] Manish Gupta, Rui Li, Zhijun Yin, and Jiawei Han. Survey on social tagging

techniques. SIGKDD Explorations, 12(1):58–72, 2010.

[46] Jeff Harrison and Mike West. Bayesian Forecasting & Dynamic Models.

Springer, 1999.

[47] Ricardo Henao, Zhe Gan, James Lu, and Lawrence Carin. Deep poisson factor

modeling. In NIPS, pages 2782–2790, 2015.

142



Section B.7 Hao Wang
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