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Abstract
Link prediction methods are frequently applied in
recommender systems, e.g., to suggest citations
for academic papers or friends in social networks.
However, exposure bias can arise when users are
systematically underexposed to certain relevant
items. For example, in citation networks, authors
might be more likely to encounter papers from
their own field and thus cite them preferentially.
This bias can propagate through naively trained
link predictors, leading to both biased evaluation
and high generalization error (as assessed by true
relevance). Moreover, this bias can be exacer-
bated by feedback loops. We propose estimators
that leverage known exposure probabilities to mit-
igate this bias and consequent feedback loops.
Next, we provide a loss function for learning the
exposure probabilities from data. Finally, experi-
ments on semi-synthetic data based on real-world
citation networks, show that our methods reli-
ably identify (truly) relevant citations. Addition-
ally, our methods lead to greater diversity in the
recommended papers’ fields of study. The code
is available at github.com/shantanu95/
exposure-bias-link-rec.

1. Introduction
Diverse application domains, including both citation net-
works and social networks, are characterized by graph-
structured data. Here, nodes represent entities (like papers or
users) and edges represent associations between two nodes
(like citations, friendships, or follows). Link recommender
systems (RSs) leverage node attributes and existing links to
suggest new nodes that a given node should link to (Li et al.,
2017; Bai et al., 2019; Ma et al., 2020). Typically, RSs are
trained and evaluated directly on the observed graph, raising
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concerns about exposure bias—many missing links are false
negatives, and did not form due to lack of exposure rather
than a lack of affinity.

Consider the example of an RS that recommends relevant
citations to authors given attributes of their paper (like title,
abstract, etc.). In this case, equally relevant papers from dif-
ferent fields of study (FOS) might be less cited historically
because authors have been preferentially exposed to papers
in their own FOS. In the observed citation graph, a number
of relevant papers are observed as not cited because the user
was not exposed to those papers. Thus evaluating a link RS
directly on the observed graph may yield a biased estimate
of the true risk.

Exposure bias can exacerbate popularity bias, causing rele-
vant but unpopular items to not be shown (Chen et al., 2020).
In social networks, diverse recommendations can help users
form links with communities they would otherwise not dis-
cover (Li et al., 2017; Brandão et al., 2013). In citation
networks, exposure bias can also lead to lines of research be-
ing duplicated across fields. Examples include model-based
science and linear canonical transforms, which were devel-
oped in isolation (Vincenot, 2018; Liberman & Wolf, 2015).
Thus it would be valuable to have an RS that recommends
relevant low-exposure nodes.

In this paper, we call the probability that a node is exposed
to another node the propensity score; and we call the proba-
bility that, given exposure, a node links to another node the
link probability. An RS trained directly on the observed data
will underestimate the link probability for low propensity
nodes relative to high propensity nodes. We demonstrate
this with a simple example in the context of academic cita-
tion recommendation.

Example 1 (Exposure Bias). Let’s say that there are two
FOS: Machine Learning (ML) and Physics (PH), with n
papers in each. An ML researcher is looking for papers to
cite. The probability of them being exposed to papers in
ML and PH is 0.9 and 0.6, respectively. Given exposure,
the probabilities that they cite papers from ML and PH are
0.8 and 0.8, respectively. In the observed data, we will see
≈ 0.72n(= 0.9 × 0.8n) ML papers cited and ≈ 0.48n(=
0.6 × 0.8n) PH papers cited. Thus, if we directly learn
link probabilities from the observed data, the probability
of citing a PH paper will be underestimated (0.48 instead
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of 0.8) more than that of an ML paper (0.72 instead of
0.8). This shows that equally relevant papers with lower
propensity may be deemed less relevant.

To begin, we show that evaluating an RS naively on the
observed data provides a misleading measure of its risk.
Instead, we argue that an RS should be evaluated via the risk
that would have been incurred had every user been exposed
to every node. We call this the true risk. We propose three
estimators of the true risk that use known propensity scores
for estimation (Section 3). The key idea is to weight the
positive and negative links using functions of the propensity
scores and link probabilities. Each of the three estimators
uses a different weighting scheme. We provide sufficient
conditions for when they will have lower bias than the naive
estimator for the true risk. We then derive a generalization
bound that shows that, with high probability, the true risk
is close to the risk estimated by our proposed methods. We
use this bound to motivate a loss function that can be used
to simultaneously learn the link probabilities and propensity
scores (Section 4). Next, under a simplified model of link
recommendation, where nodes belong to one of a finite
number of categories, we prove that feedback loops arise
under exposure bias and that they worsen at a faster rate for
lower propensity nodes (Section 5). We further show that
accounting for exposure bias can help alleviate them.

We empirically validate our methods on real-world citation
data from the Microsoft Academic Graph (MAG) (Sinha
et al., 2015) (Section 6). Since true exposure values are
not available in the real data, we construct a semi-synthetic
data with simulated exposure and link probabilities. Our
methods lead to higher precision and recall against true
citations than the naive method. On real data, our methods
maintain comparable performance to the naive method on
metrics computed against the observed data and recommend
more papers from different fields-of-study.

2. Related Work
There is a rich literature for correcting bias in RSs. Swami-
nathan & Joachims (2015) present a counterfactual risk
minimization framework for learning from logged bandit
feedback. Joachims et al. (2017) use a counterfactual infer-
ence framework to counteract selection bias in click data.
Schnabel et al. (2016) propose unbiased performance es-
timators for RSs that use known propensity scores when
explicit item ratings are observed with selection bias. Ma
& Chen (2019) recover propensities under the low nuclear
norm assumption. Wang et al. (2020b) use exposure data to
construct a substitute for unobserved confounders. Wang
et al. (2021) show that bandit algorithms can lead to an
unfair allocation of exposure across arms, and to overcome
this issue, they propose an alternative formulation, where
each arm receives exposure proportional to its merit. The

implicit feedback setting, where user interactions, such as
clicking and listening (as opposed to explicit ratings), are
used to train the RS, is more closely related to our setting.
It is known that in this setting, some negative examples are
false negatives due to exposure bias (Jeunen, 2019, Sec-
tion 4.1). Yang et al. (2018) use inverse propensity scoring
to create an unbiased evaluator for this setting using inverse-
propensity-scoring based methods. Liang et al. (2016b)
model exposure as a latent variable and incorporate it into
a collaborative-filtering approach. Liang et al. (2016a) use
exposure and click models to re-weight samples to make
unbiased predictions. Our work leverages ideas from these
works, especially the approach of re-weighting samples to
counter the bias. However, this work addresses the item
recommendation regime and the methods do not translate to
the link prediction setting.

Chang & Blei (2009) develop a relational topic model for
link prediction in document graphs. Wang et al. (2017)
extend this work by incorporating deep learning under the
framework of Bayesian deep learning (Wang et al., 2015;
Wang & Yeung, 2016; 2020). In social networks, learning-
based methods and proximity-based methods are leveraged
(Wang & Li, 2013; Li et al., 2017). Masrour et al. (2020)
study filter bubbles in link prediction and propose a method
to recommend more diverse links. Citation recommenders
use paper data and metadata for training (Beel et al., 2016;
Ma et al., 2020). Some systems use local citation contexts
to improve predictions (Wang et al., 2020a; Haruna et al.,
2017). In contrast, our goal in this work is to augment
existing models such that they account for exposure bias
during both training and evaluation.

Addressing feedback loops in RSs, Chaney et al. (2018)
and Mansoury et al. (2020) use simulations to demonstrate
that they can arise, amplifying popularity bias and user
homogeneity. Sun et al. (2019) present several matrix-
factorization-based debiasing algorithms to prevent feed-
back loops. Sinha et al. (2016) propose a method to identify
the items affected by feedback loops and recover the user’s
intrinsic preferences. Jiang et al. (2019) show that feedback
loops can create echo-chambers and filter bubbles. Zhao
et al. (2017) show that models amplify biases in training
data and propose a constraint-based method to mitigate this.
In contemporaneous work, Wang & Russakovsky (2021)
extend this work and propose another metric for measuring
bias and empirically show that it disentangles the direction
of amplification.

3. Estimating Risk under Exposure Bias
Notation. Our dataset is a directed graph G(V,E), where
V = {v1, . . . , vn} is the set of n nodes and E is the set
of edges, s.t. (i, j) ∈ E denotes a link from vi to vj . We
denote by U = {(i, j) : i ∈ [n], j ∈ [n], s.t. i 6= j} the
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possible (including missing) links in the graph; by πij the
propensity, i.e., the probability that vi is exposed to vj ; and
by yij the link probability, i.e., the probability that vi links
to vj conditional on exposure to vj . The binary random
variable o′ij represents if vi links to vj assuming exposure to
vj ; the binary random variable aij represents if vi is exposed
to vj ; and the binary random variable oij representing if vi
links to vj . Thus the data generating process for G(V,E) is
as follows: ∀(i, j) ∈ U , we have

o′ij ∼ Ber(yij),

aij ∼ Ber(πij),
oij = o′ijaij ,

where Ber(.) is the Bernoulli distribution. The predicted
link probability is ŷij and the estimated propensity is π̂ij .
The predicted link outcome is ôij = 1(ŷij ≥ 0.5). As
an example, consider a citation graph. Here, each vi is an
academic paper, πij is the probability that authors of vi
are exposed to vj , and yij is the probability that vi cites vj
conditional on exposure to vj .
Definition 1 (True Risk). This is the risk of the predictions
ŷ on the graph that would have been generated if all nodes
were exposed to all other nodes, i.e., if ∀ (i, j) ∈ U , πij =
1. The true risk is defined as

R(ŷ) = Eo′

 1

|U|
∑

(i,j)∈U

δ(o′ij , ŷij)


=

1

|U|
∑

(i,j)∈U

[yijδ(1, ŷij) + (1− yij)δ(0, ŷij)],

where δ is some loss function (for example, log-loss).

True risk is different from the risk of the predictions on the
observed graph as some relevant links are missing due to a
lack of exposure. Thus the performance of an RS should be
evaluated based on the true risk since it correctly accounts
for relevant but low-exposure nodes.

In order to compare the biases and variances of the estima-
tors we propose, we make Assumption 1 in this section. All
proofs for this section are in Appendix A.
Assumption 1. The loss function δ satisfies the following:

1. It only depends on the predicted binary outcome, i.e.,
δ(oij , ŷij) = δ(oij , ôij),

2. δ(0, 0) = δ(1, 1) = 0, and
3. δ(0, 1) = δ(1, 0) := ∆.

Naive Estimator. One approach to estimating the true risk
is to directly use the observed graph. We call this the naive
estimator. It is defined as

R̂naive(ŷ) =
1

|U|
∑

(i,j)∈U

δ(oij , ôij).

Lemma 3.1. The bias and variance of R̂naive(ô) are

B(R̂naive) =
∣∣∣E[R̂naive]−R(ô)

∣∣∣
=

∆

|U|

∣∣∣∣∣∣
∑

(i,j)∈U

yij(1− πij)(1− 2ôij)

∣∣∣∣∣∣ ,
Var(R̂naive) =

∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij).

Lemma 3.1 shows that R̂naive is a biased estimator of the
true risk. R̂naive will be unbiased only if either all nodes are
exposed to all the others, i.e., if ∀(i, j) ∈ U , πij = 1,
or if all nodes are irrelevant to all the others, i.e., if
∀(i, j) ∈ U , yij = 0. Thus evaluating an RS using R̂naive
can be misleading. We propose three estimators that lever-
age learned propensities π̂ and link probabilities ŷ to weight
the examples to correct for this bias.

Estimator R̂w. The first estimator we propose is

R̂w(ŷ, π̂) =
1

|U|
∑

(i,j)∈U

wijδ(oij , ôij), where (1)

wij =
oij
π̂ij

+ (1− oij)ψij , ψij =
1− ŷij

1− π̂ij ŷij
. (2)

In R̂w, the positive examples are up-weighted according to
the inverse propensity. The negative examples are down-
weighted (as ψij ≤ 1). Intuitively, this weighting corrects
for the fact that, in the observed graph, some positive exam-
ples are observed as negative examples since the nodes are
exposed according to the propensities π.

Lemma 3.2. The bias and variance of R̂w are

B(R̂w) =
∆

|U|

∣∣∣∣∣ ∑
(i,j)∈U

[
(1− ôij)yij

(
1− πij

π̂ij

)
+

ôij (1− yij − (1− yijπij)ψij)

]∣∣∣∣∣, (3)

Var(R̂w) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)vij ,

where vij =
1− ôij
π̂2
ij

+ ôijψ
2
ij .

Lemma 3.2 shows that R̂w will be unbiased if the propen-
sities and link probabilities are estimated correctly, i.e., if
∀(i, j) ∈ U , π̂ij = πij and ŷij = yij . We later derive
sufficient conditions for when R̂w will have lower bias than
R̂naive even if π and y are incorrectly estimated.
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Estimator R̂PU. We adapt an unbiased estimator pro-
posed by Bekker et al. (2019) for the positive-and-unlabeled
(PU) setting. The idea is to remove an appropriate number
of negative examples for each positive example. We have

R̂PU(ŷ, π̂) =
1

|U|
∑

(i,j)∈U

[
wijδ(oij , ôij) + w′ijδ(0, ôij)

]
,

where wij =
oij
π̂ij

+ (1− oij), w′ij = oij

(
1− 1

π̂ij

)
.

We weight the positive examples by the inverse propensity
and for each positive example, remove a negative example
weighted by |w′ij |.

Lemma 3.3. The bias and variance of R̂PU are

B(R̂PU) =
∆

|U|

∣∣∣∣∣∣
∑

(i,j)∈U

yij

(
1− πij

π̂ij

)
(1− 2ôij)

∣∣∣∣∣∣ ,
Var(R̂PU) =

∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)
π̂2
ij

.

R̂PU will be unbiased when ∀(i, j) ∈ U , π̂ij = πij .

Estimator R̂AP. R̂AP adds positive examples for each neg-
ative example. It is defined as

R̂AP(ŷ, π̂) =
1

|U|
∑

(i,j)∈U

[
wijδ(oij , ôij) + w′ijδ(1, ôij)

]
,

where wij = oij + (1− oij)ψij , w′ij = (1− oij)τij ,

τij =

(
ŷij(1− π̂ij)
1− π̂ij ŷij

)
.

Lemma 3.4. The bias and variance of R̂AP are

B(R̂AP) =
∆

|U|

∣∣∣∣∣ ∑
(i,j)∈U

(1− ôij)[(1− πij)yij−

(1− πijyij)τij ] + ôij (1− yij − (1− yijπij)ψij)

∣∣∣∣∣,
Var(R̂AP) =

∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)ψ2
ij ,

where ψ is defined in Eq. 2.

R̂AP is unbiased if ∀(i, j) ∈ U , π̂ij = πij and ŷij = yij .

Theorem 3.1 (Comparison of Variances). For all values
of π̂, ŷ, we have Var(R̂AP) < Var(R̂naive), and
Var(R̂AP) < Var(R̂w) < Var(R̂PU).

In order to compare the biases, we make the following
simplifying assumption.

Assumption 2. For the graph G(V,E) with n nodes, the
number of edges from each node is O(1). Thus the number
of positive links |E| ∈ O(n). And the number of negative
links (|U| − |E|) ∈ O(n2). Thus the number of negative
links is much greater than the number of positive links for a
large n. If the predictions ŷ are close to the true values, we
would expect the number of negative predictions (ô = 0) to
also be much larger than the number of positive predictions
(ô = 1). So we assume that the contribution of positive
predictions to the bias is negligible.

Let U ′ = U \ E. Under Assumption 2, the biases are

B(R̂naive) ≈
∆

|U ′|

∣∣∣∣∣∣
∑

(i,j)∈U ′

yij(1− πij)

∣∣∣∣∣∣ ,
B(R̂w) ≈ B(R̂PU) ≈ ∆

|U ′|

∣∣∣∣∣∣
∑

(i,j)∈U ′

yij

(
1− πij

π̂ij

)∣∣∣∣∣∣ ,
B(R̂AP) ≈ ∆

|U ′|

∣∣∣∣∣ ∑
(i,j)∈U ′

[(1− πij)yij − (1− πijyij)τij ]

∣∣∣∣∣.
Theorem 3.2 (Comparison of Biases). Under these
approximations, a sufficient condition for B(R̂w) =

B(R̂PU) < B(R̂naive) is

πij
2− πij

< π̂ij < 1, ∀(i, j) ∈ U ,

and for B(R̂AP) < B(R̂naive) is

πij
2− πij

< π̂ij < 1 and 0 < ŷij < cyij , ∀(i, j) ∈ U

where c =
2(1− πij)

1− π̂ij − πijyij + (2− πij)π̂ijyij
≥ 1.

Thus, if π̂ are not too-underestimated and ŷ are not too-
overestimated, the proposed estimators will have lower bias
than the naive estimator.

4. Learning Propensities and Link
Probabilities

The previous section assumes known propensities (π̂) and
link probabilities (ŷ). We present a loss function that uses
our proposed estimators from Section 3 to learn π̂ and ŷ.
A natural approach might be to minimize the negative log-
likelihood of the observed data:

π̂, ŷ = argmin
π̂,ŷ

L(o|ŷ, π̂),

where L(o|ŷ, π̂) =
∑

(i,j)∈U −oij log(ŷij π̂ij) − (1 −
oij) log(1− ŷij π̂ij). However, this might not ensure that the
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true risk remains small. We derive a generalization bound
that motivates a different loss function (see Appendix B for
the proof).

Definition 2 (Rademacher Complexity). Let F be a class
of functions (π̂, ŷ). Each estimator R̂ ∈

{
R̂w, R̂PU, R̂AP

}
can be written as 1

|U|
∑

(i,j)∈U r(oij , π̂ij , ŷij) for an ap-

propriate function r (e.g. by Eq. 2, for R̂w, we
have r(oij , π̂ij , ŷij) = wijδ(oij , ŷij)) . For R̂ ∈{
R̂w, R̂PU, R̂AP

}
, we define a quantity analogous to the

Empirical Rademacher Complexity (Bartlett & Mendelson,
2002) as

Ĝo(F , R̂) = Eσ

 sup
(π̂,ŷ)∈F

1

|U|
∑

(i,j)∈U

σijr(oij , π̂ij , ŷij)

 ,
where σij are independent Rademacher random vari-
ables. And the Rademacher Complexity is G(F , R̂w) =

Eo[Ĝo(F , R̂w)].

Ĝo(F , R̂w) can be estimated from the data by taking a ran-
dom sample of the variables σij and optimizing the above
objective. Next, we present a generalization bound based
on Ĝo(F , R̂w).

Theorem 4.1 (Generalization Bound). Let F be a class
of functions (π̂, ŷ). Let δ(oij , ŷij) ≤ η ∀(i, j) ∈ U and

π̂ij ≥ ε > 0 ∀(i, j) ∈ U . Then, for R̂ ∈
{
R̂w, R̂PU, R̂AP

}
,

with probability at least 1− δ, we have

R(ŷ) ≤ R̂(ŷ, π̂) +B(R̂) + 2G(F , R̂) +M

≤ R̂(ŷ, π̂) +B(R̂w) + 2Ĝ(F , R̂w) + 3M,

where M =
√

4η2

ε2|U| log( 2
δ ) and B(R̂) is the bias of R̂

derived in Section 3.

Loss Function. The bound shows that R̂ ∈
{R̂w, R̂PU, R̂AP} is close to the true risk R. This suggests
that we should choose π̂, ŷ that lead to small values of R̂ as
this will also minimize the true risk with high probability.
This motivates us to learn π̂, ŷ by minimizing the following
objective:

π̂, ŷ = argmin
π̂,ŷ

L(o|ŷ, π̂), subject to R̂(π̂, ŷ) ≤ c,

where R̂ ∈ {R̂w, R̂PU, R̂AP} and c > 0 is some constant. In
practice, we minimize the following relaxed version of this
objective:

l(π̂, ŷ) = λLL(o|π̂, ŷ) + λRR̂(π̂, ŷ), (4)

where λR and λL are hyperparameters. One might try to
minimize the loss function using only R̂ by setting λL = 0.

This will not work because trivial solutions exist for all three
risk functions: if ∀(i, j) ∈ U , ŷij = 1, then R̂w(ŷ, π̂) = 0;
if ∀(i, j) ∈ U , π̂ij = 1, ŷij > 0.5, then R̂PU = R̂AP = 0.
Hence, we need to use λL > 0 during training to prevent
the model from collapsing to these solutions. It is possible
use parametric models like neural networks for ŷ and π̂ to
incorporate information associated with the nodes (like user
data or paper data). The parameters can be learned by using
gradient-based methods by minimizing the loss in Eq. 4.

5. Feedback Loops
In this section, we analyze what happens when we train
an RS repeatedly on data generated by users interacting
with that system’s recommendations. We show that for an
RS that does not account for exposure bias, the fraction of
high-propensity nodes that are recommended continually
increases over time. In other words, the system will progres-
sively recommend fewer low-propensity nodes, even if they
are relevant, as time goes on. Next, we show that correcting
for exposure bias ensures that relevant low-propensity nodes
keep being recommended. In this section, we assume that
the attributes of the nodes take values in a discrete set.

Assumption 3. Each node belongs to one of C categories
from the set C = {c1, . . . , cC}. Each category contains n
nodes. V = {v1, . . . , vN} is the set of nodes and N = nC.
The function γ : V → C maps a node to its category. The
link probability yij and propensity πij depend only on the
categories of the nodes, i.e., yij = ylm and πij = πlm if
γ(vi) = γ(vl) and γ(vj) = γ(vm). Therefore, for any pair
of nodes (vi, vj), the product πijyij depends only on the
categories vi and vj belong to. Let quv = πijyij for some
vi, vj s.t. γ(vi) = cu and γ(vj) = cv .

Iterative Training Process. We now describe the itera-
tive training process for an RS that does not account for
exposure bias. We will restrict our attention to analyzing the
recommendations made for the n nodes in some category
cu ∈ C. We assume that we make one recommendation for
each node (this simplifies exposition but is not necessary).
At time step t, the fraction of nodes recommended from each
category is represented by the (C − 1)-simplex κ(t). So out
of the n nodes from cu, nκ(t)

v of them are recommended
a node from the category cv, where κ(t)

v is the vth element
of κ(t). Links are generated from the recommended nodes
according to ground-truth propensities and link probabilities.
Thus a node from cu creates a link to a recommended node
from cv with probability quv. Since we are examining rec-
ommendations for category cu, we will drop the subscript
u going forward, i.e., qv = quv . This gives us training data
for the next iteration. We assume that a node only creates a
link to nodes from the recommended nodes. In other words,
links are not created to nodes that are not recommended.
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The number of nodes linked to from category cv at time t
is n(t)

v . Then n(t)
v ∼ Binomial(nκ(t)

v , qv). During training,

the link probability is estimated as q̂(t)
v =

n(t)
v

n . We assume
that, at time step t+ 1, nodes from category cv are recom-
mended with probability proportional to q̂(t)

v . This is akin to
recommending with some exploration (Kawale et al., 2015).
Let the (C − 1)-simplex denoting normalized estimates

be ê(t+1) =

[
q̂
(t)
1

S ,
q̂
(t)
2

S , . . . ,
q̂
(t)
C

S

]
, where S =

∑C
j=1 q̂

(t)
j .

Thus the recommendations for the next step κ(t+1) have
the distribution κ(t+1) ∼ 1

nMultinomial(n, ê(t+1)). This
process is repeated at each time step. The initial training
data is generated by the user generating links according to
the ground-truth propensities and link probabilities.

Example 2. We illustrate the iterative training process with
a minimal example. Let C = {c1, c2}. We examine the rec-
ommendations made to nodes in c1. Let n = 100, q1,1 = 0.8
and q1,2 = 0.4. At time t, let κ(t) = [0.6, 0.4]. Infor-
mally, 60 of the recommended nodes are from c1 and the
remaining 40 from c2. The nodes create links to the rec-
ommended nodes with probabilities q1,1 and q1,2. There-
fore, the number of nodes linked that belong to c1 at
time t is n(t)

1 ∼ Binomial(60, q1 = 0.8) and similarly,
n

(t)
2 ∼ Binomial(40, q2 = 0.4). Informally, the realized

values are n(t)
1 = 48 and n(t)

2 = 16. The estimated link
probabilities are q̂(t)

1 = 0.48, q̂
(t)
2 = 16

100 = 0.16 and
ê(t+1) =

[
0.48
0.64 ,

0.16
0.64

]
= [0.75, 0.25]. Then, at time t + 1,

we recommend nodes according to ê(t+1), i.e., κ(t+1) ∼
1

100 Multinomial(100, ê(t+1)). The realized value of κ(t+1)
1

is likely to be greater than κ(t)
1 . Thus more items from c1 are

likely to be recommended at time t+1 as compared to time t.
This provides some intuition for the existence of a feedback
loop: nodes that are linked less are in turn recommended
with a lower probability in the next time step.

We formally show the existence of feedback loops (see Ap-
pendix C for the proofs). We prove a finite-sample result
which shows that, with high probability, the relative proba-
bility of recommending nodes from categories with higher
values of qj keeps increasing over time.

Theorem 5.1. Suppose that qv > qw if v > w. Let κ(t)
vw =

κ(t)
v

κ
(t)
v +κ

(t)
w

. Let A(t)
vw represent the event that relative fraction

of recommendations from cv to that from cw increases at
time t, i.e., κ(t+1)

vw > κ
(t)
vw. Let A(t) be the event that all

relative fractions get skewed towards cv from cw if qv > qw,
i.e., A(t) =

⋂
(v,w)∈S A

(t)
vw, where S = {(v, w) : v ∈

[C], w ∈ [C], v > w}. Then, for constants ε, η > 0 that

only depend on κ(t) and q, we have

P(A(t)|κ(t)) ≥ 1− 2C exp

(
−2n

[
ε2 +

η2

C2

])
≥ 1− 2C exp

(
−O

( n

C2

))
.

Corollary 5.1. lim
n→∞

P(A(t)|κ(t)) = 1 if C3 ∈ o(n).

Thus, at each time step, with high probability, nodes with
low propensity are less likely to be recommended in the next
time step. Therefore, if an RS does not correct for exposure
bias, over time, even relevant nodes with low propensity are
unlikely to be recommended. Next, we derive and analyze
the rate at which the exposure bias exacerbates.

Theorem 5.2. Suppose that qv > qw. As n→∞, κ(t)
vw

p→
1− 1

1+ct , where c = qv
qw

.

Theorem 5.2 shows that the rate at which the bias exacer-
bates is dependent on the ratio qv

qw
. Therefore, the lower

the propensity, the faster the probability of that node being
recommended reduces.

Corollary 5.2. Let ycucv = yij for some (i, j) s.t. u =
γ(i) and v = γ(j) (γ is defined after Assumption 3). We
now assume that we have a consistent estimator q̂(t)

v
p→

κ
(t)
v ygugv , where κ(t)

v is the vth element of the simplex κ(t).
Thus q̂(t)

v is an estimator that negates the effect of exposure
bias. As n→∞, κ(t)

vw
p→ 1− 1

1+ct , where c =
ygugv

ygugw
.

This shows that accounting for exposure bias can alleviate
the feedback loop. Despite having low propensity, relevant
papers will continue to be recommended.

6. Experiments
We validate our link recommendation methods on the task
of citation recommendation. Given an input paper’s data
(like title, abstract, etc.), the goal is to recommend papers
that it should cite. We use the Microsoft Academic Graph
(MAG) dataset (Sinha et al., 2015). MAG is a graph contain-
ing scientific papers and the citation relationships between
them. It also contains the titles, abstracts, and FOS of the pa-
pers. In our experiments, we use subgraphs from the MAG
by performing a breadth-first search from some root node.
For each paper, we concatenate the title and abstract and
generate a 768-dimensional embedding for the text using
the bert-as-service library (Xiao, 2018). We use a SciBERT
model (Beltagy et al., 2019), which is a BERT model trained
on scientific text, with this library. For each paper pi, we
generate the embedding hi ∈ R768. The FOS in MAG are
organised as a tree, where a child is a sub-field of its parent.
We only use the root-level FOS for each paper and there are
19 such FOS. We use Amazon Sagemaker (Liberty et al.,
2020) to run our experiments.
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Table 1. Evaluation metrics on the test set of the semi-synthetic
data computed against known ground truth citation links.

MODEL PREC. REC. AUC MAP

NO PROP. 67.24 54.81 84.45 41.87
MLE 81.04 60.19 93.12 56.77
R̂w 83.28 63.73 96.42 56.96
R̂PU 82.16 63.07 94.28 58.01
R̂AP 83.01 65.54 95.38 59.90

For simplicity, we assume that the propensities πij depend
only on the FOS of papers pi and pj . Thus the propensity
model is parameterized by θ̂π ∈ [0, 1]19×19. However, our
methods can easily extend to more complicated parametric
propensity estimators like neural networks. To model the
link probability ŷij , we use the following model:

ŷij = σ(ŵ>(hi � hj) + b̂), (5)

where ŵ ∈ R768 and b̂ ∈ R are trainable parameters, � is
an element-wise product, and σ is the sigmoid function. We
use stochastic gradient descent to learn θ̂π, ŵ and b̂ using
the loss function described in Eq. 4 with δ as the log-loss,
i.e., δ(u, û) = −u log(û)− (1−u) log(1− û). For training,
we use the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 10−4 and a batch size of 32.

6.1. Semi-Synthetic Dataset

Since we do not have ground truth exposure values in the
MAG dataset, we cannot know whether a paper was not cited
due to a lack of exposure or due to irrelevancy. As a result,
we construct a semi-synthetic dataset with simulated propen-
sity scores and link probabilities. We use a subset of 41,600
papers. We generate train-test-validation splits by taking a
topological ordering of the nodes and use the subgraph cre-
ated from the first 70% for training, next 10% for validation,
and the remaining 20% for testing. We use the real text and
FOS for each paper. The simulated propensity matrix π is a
19×19 matrix with its diagonal and off-diagonal entries ini-
tialized from U(0.7, 1) and U(0.1, 0.3), respectively, where
U(.) is the uniform distribution. The link probability is
simulated using yij = σ(w>(hi � hj) + b), where σ is the
sigmoid function, � is element-wise product, and w, b are
fixed known vectors.

We show the evaluation metrics for five models on the test
set computed against the simulated true citations (not the
observed citations) (Table 1). No Prop is the model trained
naively on the observed data using only the output model in
Eq. 5. MLE is the model trained using the loss function in
Eq. 4 with λR = 0. The remaining three are models trained
using R̂w, R̂PU, and R̂AP with λR = 10 and λL = 1. We see
that all other estimators significantly outperform No Prop.

Table 2. RMSE of the estimated risk with respect to the true risk
computed using our proposed estimators. The first column shows
the risk used in the loss function in Eq. 4 to learn π̂ and ŷ.

TRAINED
USING

ESTIMATOR USED

R̂NAIVE R̂w R̂PU R̂AP

NO PROP. 1.50 - - -
MLE 0.67 0.23 0.24 0.32
R̂w 0.43 0.04 0.10 0.11
R̂PU 0.38 0.05 0.11 0.04
R̂AP 0.41 0.06 0.08 0.03
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Figure 1. The estimated propensities propensities are close to the
true simulated values when learned using R̂w.

Additionally, our proposed estimators lead to improved per-
formance over the MLE. We emphasize that these metrics
are computed against true citations and thus are a measure
of true risk which is the appropriate metric for evaluating an
RS’s performance. This shows the utility of accounting for
exposure bias and learning using our proposed loss function.

In this work, we tackle two separate (but related) challenges.
The first challenge is learning link probabilities in such a
way that they are not underestimated due to exposure bias.
The second challenge is evaluating a RS given learned link
probabilities and propensity scores, i.e., computing a good
estimate of the true risk. We demonstrate the efficacy of
our methods for the second challenge and show that our
proposed weighting schemes lead to good estimates of the
true risk (Table 2). We show the RMSE of the risk estimated
using the proposed estimators with respect to the true risk.
The first column denotes risk function used to train the
model (as described in Section 4). The rest of the columns
denote the estimators used to estimate true risk using the
learned propensities and link probabilities from the trained
model in the first column. We trained each model 10 times
to compute the RMSE. The RMSE estimated using R̂naive is
always greater than that of the other estimators, which shows
that leveraging the learned propensities leads to substantially
better estimates of the true risk (and thus more accurately
evaluates the RS). The RMSE when trained using the MLE
is higher than when trained using our proposed estimators,
showing the benefit of our proposed estimators over the
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Table 3. Evaluation metrics for various models computed on the
test sets of the two real-world citation datasets.

MODEL PREC. REC. F1 AUC MAP

DATASET 1

NO PROP. 29.45 78.30 42.81 84.44 24.10
MLE 30.24 77.84 43.56 84.41 24.60
R̂w 31.46 78.02 44.84 84.74 25.60
R̂PU 30.98 78.94 44.49 85.24 25.11
R̂AP 36.07 76.08 48.94 84.67 28.58

DATASET 2

NO PROP. 44.86 70.85 54.94 83.22 33.19
MLE 44.43 74.66 55.71 84.97 34.39
R̂w 48.70 71.62 57.98 83.90 36.25
R̂PU 42.17 76.15 54.28 85.43 33.26
R̂AP 47.22 71.84 56.98 83.89 35.27

MLE. This also qualitatively validates the generalization
bound proved in Section 4 by showing that minimizing
R̂ ∈ {R̂w, R̂PU, R̂AP} also leads to small values of the true
risk.

The heatmap of simulated propensities and estimated
propensities when using R̂w shows that the estimated
propensities are close to the true propensities (Figure 1).
The mean relative error between the true and estimated
propensities is 19.47%, demonstrating that the training pro-
cedure recovers the propensities. Together, these results
show that our methods successfully mitigate exposure bias
in this dataset.

6.2. Real-World Datasets

We now evaluate our proposed method on a real-world ci-
tation network. We construct two datasets by using dis-
joint subgraphs of the MAG. The first generated dataset has
2,442,008 papers and 7,577,886 edges. The second dataset
has 1,328,664 papers and 1,469,899 edges. Thus the second
graph is sparser than the first one. The FOS distribution is
also different in both datasets (see details in Appendix D).
We use 70-10-20% train-validation-test splits generated sim-
ilarly to the semi-synthetic dataset. We do not have access
to true exposure values and thus we evaluate our methods
against the observed citation links.

We show the evaluation metrics for the proposed estimators
(Table 3). Since we do not have access to the true citation
links in the real dataset, we compute these metrics over the
observed links. In other words, this is a measure of the
naive risk. We see that our proposed estimators achieve
comparable metrics to No Prop. For both datasets, the best
numbers for each metric are achieved by estimators other
than No Prop. Moreover, the models using the weighted
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Figure 2. The fraction of recommended papers from the same FOS
over time.

estimators outperform the MLE estimator in both datasets.
These results show that our proposed estimators achieve
comparable performance even when evaluated on the ob-
served citation data. Similarly, Table 4 shows link predic-
tion metrics for various models computed against observed
citations. Recall@100 refers to the recall in the top 100
recommendations averaged across all papers in the test set.
Mean Rank is the mean rank of the cited papers averaged
across all the papers. Entropy@100 of True Positives is
the entropy in the FOS of the true positives in the top 100
recommendations for each paper; we use it to measure the
diversity in the FOS of the recommendations. Our proposed
estimators achieve comparable Recall@100 and Mean Rank
to No Prop for both datasets. As expected, propensity based
estimators have higher FOS entropy scores than No Prop,
with R̂w achieving the highest FOS entropy in both datasets.
Thus our proposed estimators recommend more relevant
papers from different FOS and still maintain comparable
performance to No Prop.

At first blush, the comparable performance to No Prop may
not seem compelling. However, this is a strong result. Our
goal is to correct exposure bias and minimize true risk, not
observed (or naive) risk. Since Tables 3 and 4 are computed
against observed citations, our proposed methods should not
be expected to outperform No Prop as they are not trying
to optimize metrics against the observed links. In Section
6.1, we showed that our methods correct exposure bias and
achieve lower true risk. Coupled with those results, our goal
in this section was to show that our methods do not lower
performance even if evaluated against the standard evalu-
ation metrics. We suspect that the negative log-likelihood
term L(o|π̂, ŷ) in Eq. 4 is likely responsible for the compara-
ble performance against the observed risk. This is because,
as seen from the results, the MLE also performs well as
compared to No Prop..

6.3. Feedback Loops

We run simulations to examine what happens when a cita-
tion recommender is trained repeatedly on data collected
from users interacting with its recommendations. We use
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Table 4. Link prediction metrics for various models when evaluated
on the test set of the real datasets.

MODEL
RECALL
@100

MEAN
RANK

ENTROPY@100
TRUE POSITIVES

DATASET 1

NO PROP. 24.39 2247.27 1.65
MLE 24.70 2891.40 1.73
R̂w 25.03 2836.73 1.74
R̂PU 24.61 2875.13 1.73
R̂AP 26.66 2425.51 1.71

DATASET 2

NO PROP. 6.32 10170.26 1.06
MLE 6.07 10731.88 1.08
R̂w 6.30 10873.19 1.12
R̂PU 5.92 10717.06 1.08
R̂AP 5.99 10801.11 1.10

the iterative training procedure described in Section 5. We
construct a training set of 410 papers from the MAG, with
their corresponding real FOS and text embeddings. For
ease of exposition, we use an arbitrary but fixed mapping
to map the 19 FOS to two FOS. The synthetic propensities
and link probabilities are simulated similarly to Sec 6.1. In
the first iteration, the models are trained using the observed
citation network. For subsequent training iterations, the
training data is generated as follows. For each paper, we
recommend 20 papers. The probability of recommending
a paper is proportional to its estimated citation probability.
We then simulate the user’s interaction with the recommen-
dations according to the known simulated propensities and
citation probabilities. This generates the training set for the
subsequent iteration. We then repeat this process.

We show how the fraction of recommended papers from the
same FOS changes over multiple training iterations for mod-
els trained without propensity, i.e., No Prop and the model
trained using R̂w (Figure 2). We plot this time series for
both FOS in our dataset. For No Prop, the fraction of papers
recommended from the same FOS increases over time for
both FOS (Figure 2a). This demonstrates the existence of a
feedback loop that worsens exposure bias and reduces the
number of papers recommended from a different FOS over
time. On the other hand, when we train our models using
R̂w, the feedback loop no longer exists and the fraction of
papers recommended from a different FOS remains stable
over time (Figure 2b). This shows that our proposed estima-
tor continues to recommend relevant papers from a different
FOS and corrects the feedback loop.

7. Conclusion
Proposing three estimators to correct for exposure bias, we
derive sufficient conditions for when they exhibit lower bias
than the naive estimator and incorporate them into a learn-
ing procedure. Theoretically, we prove that feedback loops
can worsen exposure bias. Empirically, we show that pro-
posed estimators improve performance against the true link
probabilities, leading to better estimates of true risk, and
combating feedback loops. Our methods can be extended to
RSs that use different propensity or link probability models.
Using domain knowledge (e.g., through graphical models)
to improve propensity learning and empirically evaluating
our methods in other link recommendation tasks are promis-
ing future directions. Exposure bias in link recommendation
also raises fairness concerns. For example, in citation recom-
mendation, certain authors or institutions might get unfair
exposure which can be worsened by the RS. Investigating
exposure bias correction methods for providing fairer rec-
ommendations would also be interesting future work.
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A. Bias and Variance
Lemma A.1. Let X ∼ Bernoulli(θ) and Y = aX + b(1−X), where a and b are some constants. Then

Var(Y ) = θ(1− θ)(a− b)2.

Proof of Lemma 3.1

Lemma. The bias and variance of R̂naive(ô) are

B(R̂naive) =
∣∣∣E[R̂naive]−R(ô)

∣∣∣
=

∆

|U|

∣∣∣∣∣∣
∑

(i,j)∈U

yij(1− πij)(1− 2ôij)

∣∣∣∣∣∣ ,
Var(R̂naive) =

∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij).

Proof. We have

R̂naive(o, ŷ) =
1

|U|
∑

(i,j)∈U

δ(oij , ôij)

=
1

|U|
∑

(i,j)∈U

[oijδ(1, ôij) + (1− oij)δ(0, ôij)]

∴ Eo[R̂naive(o, ŷ)] =
1

|U|
∑

(i,j)∈U

[yijπijδ(1, ôij) + (1− yijπij)δ(0, ôij)]

=
1

|U|
∑

(i,j)∈U

[yijπij(1− ôij)δ(1, 0) + (1− yijπij)ôijδ(0, 1)]

=
∆

|U|
∑

(i,j)∈U

[yijπij(1− ôij) + (1− yijπij)ôij ] .

The true risk is

R(ŷ) =
1

|U|
∑

(i,j)∈U

[yijδ(1, ôij) + (1− yij)δ(0, ôij)]

=
1

|U|
∑

(i,j)∈U

[yij(1− ôij)δ(1, 0) + (1− yij)ôijδ(0, 1)]

=
∆

|U|
∑

(i,j)∈U

[yij(1− ôij) + (1− yij)ôij ] .

Thus the bias is

B(R̂naive) =
∣∣∣E[R̂naive]−R(ô)

∣∣∣
=

∣∣∣∣∣∣ ∆

|U|
∑

(i,j)∈U

[yijπij(1− ôij) + (1− yijπij)ôij − yij(1− ôij)− (1− yij)ôij ]

∣∣∣∣∣∣
=

∆

|U|

∣∣∣∣∣∣
∑

(i,j)∈U

yij(1− πij)(1− 2ôij)

∣∣∣∣∣∣ .
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The variance is

Var(R̂naive) = Var

 1

|U|
∑

(i,j)∈U

[oijδ(1, ôij) + (1− oij)δ(0, ôij)]


=

1

|U|2
∑

(i,j)∈U

Var (oijδ(1, ôij) + (1− oij)δ(0, ôij))

=
1

|U|2
∑

(i,j)∈U

yijπij(1− yijπij) (δ(1, ôij)− δ(0, ôij))2 (using Lemma A.1)

=
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij).

Lemmas 3.2, 3.3, and 3.4 can be proved similarly.

Proof of Theorem 3.1

Theorem (Comparison of Variances). For all values of π̂, ŷ, we have Var(R̂AP) < Var(R̂naive), and
Var(R̂AP) < Var(R̂w) < Var(R̂PU)

Proof. First we show that Var(R̂AP) < Var(R̂naive). We have

Var(R̂AP) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)ψ2
ij ,

where ψij =
1− ŷij

1− π̂ij ŷij
< 1,

Var(R̂naive) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij).

Using the fact that ψ2
ij < 1 ∀(i, j) ∈ U , we get Var(R̂AP) < Var(R̂naive).

Next, we show that Var(R̂w) < Var(R̂PU):

Var(R̂w) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)

(
1− ôij
π̂2
ij

+ ôijψ
2
ij

)

Var(R̂PU) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)
π̂2
ij

=
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)

(
1− ôij
π̂2
ij

+
ôij
π̂2
ij

)

∴ Var(R̂w)− Var(R̂PU) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)ôij

(
ψ2
ij −

1

π̂2
ij

)

∴ Var(R̂w)− Var(R̂PU) < 0

(
because ψij < 1 and

1

π̂ij
> 1

)
∴ Var(R̂w) < Var(R̂PU).
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Next, we show that Var(R̂AP) < Var(R̂w):

Var(R̂AP)− Var(R̂w) =
∆2

|U|2
∑

(i,j)∈U

yijπij(1− yijπij)(1− ôij)

(
ψ2
ij −

1

π̂2
ij

)

∴ Var(R̂AP)− Var(R̂w) < 0

(
because ψij < 1 and

1

π̂ij
> 1

)
∴ Var(R̂AP) < Var(R̂w).

Proof of Theorem 3.2
Theorem (Comparison of Biases). Under the bias approximations, a sufficient condition for B(R̂w) = B(R̂PU) < B(R̂naive)
is

πij
2− πij

< π̂ij < 1, ∀(i, j) ∈ U ,

and for B(R̂AP) < B(R̂naive) is

πij
2− πij

< π̂ij < 1 and 0 < ŷij < cyij , ∀(i, j) ∈ U

where c =
2(1− πij)

1− π̂ij − πijyij + (2− πij)π̂ijyij
≥ 1.

Proof. We first derive the sufficient condition for B(R̂w) = B(R̂PU) < B(R̂naive). We have

B(R̂naive) ≈
∆

|U|
∑

(i,j)∈U ′

yij(1− πij),

B(R̂w) ≈ B(R̂PU) ≈ ∆

|U|

∣∣∣∣∣∣
∑

(i,j)∈U ′

yij

(
1− πij

π̂ij

)∣∣∣∣∣∣ .
If 1 > π̂ij > πij∀(i, j) ∈ U , we have(

1− πij
π̂ij

)
> 0 ∀(i, j) ∈ U

∴ B(R̂w) ≈ B(R̂PU) ≈ ∆

|U|
∑

(i,j)∈U ′

yij

(
1− πij

π̂ij

)
.

∴ B(R̂w)− B(R̂naive) =
∆

|U|
∑

(i,j)∈U ′

yij

(
πij −

πij
π̂ij

)

=
∆

|U|
∑

(i,j)∈U ′

yijπij

(
1− 1

π̂ij

)
< 0 (because π̂ij < 1)

∴ B(R̂w) < B(R̂naive).

If 0 < π̂ij ≤ πij∀(i, j) ∈ U , we have(
1− πij

π̂ij

)
≤ 0 ∀(i, j) ∈ U

∴ B(R̂w) ≈ B(R̂PU) ≈ ∆

|U|
∑

(i,j)∈U ′

yij

(
πij
π̂ij
− 1

)
. .
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Then, a sufficient condition for B(R̂w) = B(R̂PU) < B(R̂naive) is

yij

(
πij
π̂ij
− 1

)
< yij(1− πij) ∀(i, j) ∈ U

∴ yij

(
πij
π̂ij
− 1

)
< yij(1− πij) ∀(i, j) ∈ U

∴ π̂ij >
2

2− πij
∀(i, j) ∈ U .

Next, we derive the sufficient condition for R̂AP < R̂naive. Observe that

πij
2− πij

< π̂ij < 1 ∀(i, j) ∈ U

∴ (1− πij)yij − (1− πijyij)τij ≥ 0 ∀(i, j) ∈ U

∴ R̂AP ≈
∆

|U|
∑

(i,j)∈U ′

[(1− πij)yij − (1− πijyij)τij ] , where τij =

(
ŷij(1− π̂ij)
1− π̂ij ŷij

)
.

Therefore, when πij

2−πij
< π̂ij < 1 ∀(i, j) ∈ U , a sufficient condition for R̂AP < R̂naive is

(1− πij)yij − (1− πijyij)τij < yij(1− πij) ∀(i, j) ∈ U

∴ 0 < ŷij <

(
2(1− πij)

1− π̂ij − πijyij + (2− πij)π̂ijyij

)
yij ∀(i, j) ∈ U .

B. Generalization Bound
Proof of Theorem 4.1
Theorem (Generalization Bound). Let F be a class of functions (π̂, ŷ). Let δ(oij , ŷij) ≤ η ∀(i, j) ∈ U and π̂ij ≥ ε >

0 ∀(i, j) ∈ U . Then, for R̂ ∈
{
R̂w, R̂PU, R̂AP

}
, with probability at least 1− δ, we have

R(ŷ) ≤ R̂(ŷ, π̂) +B(R̂) + 2G(F , R̂) +M (6)

≤ R̂(ŷ, π̂) +B(R̂w) + 2Ĝ(F , R̂w) + 3M, (7)

where M =
√

4η2

ε2|U| log( 2
δ ) and B(R̂) is the bias of R̂ derived in Section 3.

Proof. We proceed similarly to the standard Rademacher complexity generalization bound proof (Shalev-Shwartz &
Ben-David, 2014)[Ch. 26]. Observe that

R(ŷ) = R(ŷ)−Eo[R̂(o, ŷ, π̂)] + Eo[R̂(o, ŷ, π̂)]

≤ B(R̂) + Eo[R̂(o, ŷ, π̂)]. (8)

Let Φ(o) = sup(π̂,ŷ)∈F

[
Eo[R̂(o, ŷ, π̂)]− R̂(o, ŷ, π̂)

]
. Then

Eo[R̂(o, ŷ, π̂)]| ≤ R̂(o, ŷ, π̂) + Φ(o). (9)

Now we upper bound Φ(o). Since δ(oij , ŷij) ≤ η ∀(i, j) and π̂ij ≥ ε > 0, ∀(i, j) and ∀ R̂ ∈
{
R̂w, R̂PU, R̂AP

}
, we have

|Φ(o)− Φ(õ)| ≤ 2η

ε
,
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if o and õ differ in only one coordinate, i.e., oij 6= õij for some (i, j) ∈ U and olm = õlm∀(l,m) ∈ U s.t. (i, j) 6= (l,m).
Using McDiarmid’s Inequality, with probability at least 1− δ, we have

Φ(o) ≤ E[Φ(o)] + C. (10)

Next, we upper bound E[Φ(o)]. Let ō be a ghost sample independently drawn having the same distribution as o. We have

E[Φ(o)] = Eo

[
sup

(π̂,ŷ)∈F

[
Eo[R̂(o, ŷ, π̂)]− R̂(o, ŷ, π̂)

]]

= Eo

[
sup

(π̂,ŷ)∈F
Eō

[
R̂(ō, ŷ, π̂)− R̂(o, ŷ, π̂)

∣∣ o]]

= Eo

 sup
(π̂,ŷ)∈F

Eō

 1

|U|
∑

(i,j)∈U

r(ōij , π̂ij , ŷij)−
1

|U|
∑

(i,j)∈U

r(oij , π̂ij , ŷij)
∣∣∣ o


≤ Eo,ō

 sup
(π̂,ŷ)∈F

 1

|U|
∑

(i,j)∈U

r(ōij , π̂ij , ŷij)−
1

|U|
∑

(i,j)∈U

r(oij , π̂ij , ŷij)

 (Jensen’s Inequality)

= Eo,ō,σ

 sup
(π̂,ŷ)∈F

 1

|U|
∑

(i,j)∈U

σijr(ōij , π̂ij , ŷij)−
1

|U|
∑

(i,j)∈U

σijr(oij , π̂ij , ŷij)


= Eo,ō,σ

 sup
(π̂,ŷ)∈F

 1

|U|
∑

(i,j)∈U

σijr(ōij , π̂ij , ŷij) +
1

|U|
∑

(i,j)∈U

σijr(oij , π̂ij , ŷij)


≤ Eo,ō,σ

 sup
(π̂,ŷ)∈F

 1

|U|
∑

(i,j)∈U

σijr(ōij , π̂ij , ŷij)

+ sup
(π̂,ŷ)∈F

 1

|U|
∑

(i,j)∈U

σijr(oij , π̂ij , ŷij)


= 2G(F , R̂). (11)

Combining Eqs. 8, 9, 10, and 11, we get Eq. 6. Another application of McDiarmid’s Inequality allows us to obtain Eq. 7
from Eq. 6.

C. Feedback Loops
Lemma C.1 (Binomial Tail Bound). If the random variable Xn ∼ 1

nBinomial(n, θ), then for ε > 0, we have

P(|Xn − θ| > ε) ≤ 2 exp
(
−2nε2

)
.

Proof. Observe that Xn ∈ [0, 1]. Applying Hoeffding’s inequality gives us the desired result.

Lemma C.2. Let n ∈ N and κ be a fixed C − 1 simplex such that κvn ∈ N ∀v ∈ [C]. The random variable q̃v ∼
1
κvn

Binomial(κvn, qv), where qv ∈ (0, 1). Assume that qv > qw if v > w. We denote as ê the following C − 1 simplex:

ê =
1

Z
[κ1q̃1, κ2q̃2, . . . , κC q̃C ] , where Z =

∑
i∈[C]

κiq̃i.

Let êvw = êv
êv+êw

= κv q̃v
κw q̃w+κw q̃w

and κvw = κv

κv+κw
. Then for a constant ρvw such that

0 < ρvw <
κvκw(qv − qw)

qvκ2
v + (qv + qw)κvκw + qwκ2

w

,

we have

|q̃v − qv| < εvw, |q̃w − qw| < εvw =⇒ êvw − κvw > ρvw,

for some constant εvw s.t. 0 < εvw <
ρvwqvκ

2
v − κvκw(qw − qv) + qwρvwκv(κv − κw)

ρvw(κ2
v − κ2

w)− 2κvκw
.
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This is saying that, for (v, w) s.t. v > w the simplex ê will be more skewed towards v than the simplex κ if the sampled q̃v
and q̃w are close to their mean values qv and qw, respectively.

Proof. Observe that if |q̃v − qv| < εvw and |q̃w − qw| < εvw, then the lowest value that êvw can take is

ê(min)
vw =

κv(qv − εvw)

κv(qv − εvw) + κw(qw + εvw)
, and

ê(min)
vw − κvw > ρvw =⇒ êvw − κvw > ρvw.

Therefore, we have

ê(min)
vw − κvw > ρvw and εvw < qw

⇐=
κv(qv − εvw)

κv(qv − εvw) + κw(qw + εvw)
− κv
κv + κw

> ρvw︸ ︷︷ ︸
(1)

and ρvw <
κvκw(qv − qw)

qvκ2
v + (qv + qw)κvκw + qwκ2

w

.

The inequality (1) above can further be simplified as

κv(qv − εvw)

κv(qv − εvw) + κw(qw + εvw)
− κv
κv + κw

> ρvw

⇐= εvw <
ρvwqvκ

2
v − κvκw(qw − qv) + qwρvwκv(κv − κw)

ρvw(κ2
v − κ2

w)− 2κvκw
.

This completes the proof.

Lemma C.3. Let α be a fixed C − 1 simplex and ê be the following G− 1 simplex, ê = 1
Z [α1q̃1, α2q̃2, . . . , αC q̃C ], where

Z =
∑
z∈[C] αz q̃z and the vector κ ∼ 1

nMultinomial(n, ê). Let êvw = êv
êv+êw

= q̃v
q̃w+q̃w

and κvw = κv

κv+κw
.

Assume that |q̃z − qz| < ε ∀z ∈ [C] where qz ∈ (0, 1) are fixed. If |κv − êv < ηnw

C | and |κw − êw < ηnw

C |, then for some
constant ρ, we have

êvw − κvw < ρ, when ηvw < ρ

(
qv + qw

maxz∈[C] qz + ε

)
.

Proof. If |κv − êv < ηnw

C | and |κw − êw < ηnw

C |, then the smallest value that κvw can achieve is

κ(min)
vw =

êv − ηnw

C

êv + êw
.

This means that

êvw − κvw < ρ

⇐= êvw − κ(min)
vw < ρ

⇐⇒
ηnw

C

êv + êw
< ρ

⇐⇒ ηnw
C

< ρ(êv + êw).
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Since |q̃z − qz| < ε ∀z ∈ [C], we have

êv =
αv q̃v∑

z∈[C] αz q̃z

>
αv(qv − ε)

αv(qv − ε) +
∑
z∈[C],z 6=v αz(qz + ε)

>
αv(qv − ε)

C maxz∈[C] αz(qz + ε)
,

and similarly êw >
αw(qw − ε)

C maxz∈[C] αw(qz + ε)

∴ êv + êw >
αv(qv − ε) + αw(qw − ε)
C maxz∈[C](qz + ε)

.

Therefore, we can set ηvw such that

ηnw
C

< ρ

(
αv(qv − ε) + αw(qw − ε)
C maxz∈[C](qz + ε)

)
∴ ηnw < ρ

(
αv(qv − ε) + αw(qw − ε)

maxz∈[C] qz + ε

)
.

Proof of Theorem 5.1

Theorem. Suppose that qv > qw if v > w. Let κ(t)
vw =

κ(t)
v

κ
(t)
v +κ

(t)
w

. Let A(t)
vw represent the event that relative fraction of

recommendations from cv to that from cw increases at time t, i.e., κ(t+1)
vw > κ

(t)
vw. Let A(t) be the event that all relative

fractions get skewed towards cv from cw if qv > qw, i.e., A(t) =
⋂

(v,w)∈S A
(t)
vw, where S = {(v, w) : v ∈ [C], w ∈ [C], v >

w}. Then, for constants ε, η > 0 that only depend on κ(t) and q, we have

P(A(t)|κ(t)) ≥ 1− 2C exp

(
−2n

[
ε2 +

η2

C2

])
≥ 1− 2C exp

(
−O

( n

C2

))
.

Proof. We know that the estimated probabilities q̂(t)
v have distribution q̂(t)

v |κ(t) ∼ 1
nBinomial(nκ(t)

v , qv). The simplex with
normalized probabilities is ê(t+1) = 1

Z [q̂
(t)
1 , q̂

(t)
2 , . . . , q̂

(t)
C ], where Z =

∑
z∈[C] q̂

(t)
z .

Let q̃(t)
v =

q̂(t)v

κ
(t)
v

. Observe that q̃(t)
v |κ(t) ∼ 1

nκ
(t)
v

Binomial(nκ(t)
v , qv). We denote by ê(t+1)

vw ,

ê(t+1)
vw =

ê
(t+1)
v

ê
(t+1)
v + ê

(t+1)
w

=
κ

(t)
v q̃

(t)
v

κ
(t)
v q̃

(t)
v + κ

(t)
w q̃

(t)
w

.

There are two main parts to the proof. First, we show that, with high probability, ê(t+1)
vw − κ(t)

vw > ρ ∀(v, w) ∈ S for some
constant ρ. Then, we show that, with high probability, ê(t+1)

vw − κ(t+1)
vw < ρ ∀(v, w) ∈ S. We combine these two results to

show that, with high probability, κ(t+1)
vw > κ

(t)
vw ∀(v, w) ∈ S.

Using Lemma C.2, for some (v, w) ∈ S, we know that for some constant ρvw such that

0 < ρvw <
κ

(t)
v κ

(t)
w (qv − qw)

qv(κ
(t)
v )2 + (qv + qw)κ

(t)
v κ

(t)
w + qw(κ

(t)
w )2

,
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we have

|q̃(t)
v − qv| ≤ εvw and |q̃(t)

w − qw| ≤ εvw =⇒ ê(t+1)
vw − κ(t)

vw ≥ ρvw,

for a constant εvw s.t. 0 < εvw <
ρvwqv(κ

(t)
v )2 − κ(t)

v κ
(t)
w (qw − qv) + qwρvwκ

(t)
v (κ

(t)
v − κ(t)

w )

ρvw((κ
(t)
v )2 − (κ

(t)
w )2)− 2κ

(t)
v κ

(t)
w

=⇒ P
(
ê(t+1)
vw − κ(t)

vw ≥ ρvw
)
≥ P

(
|q̃(t)
v − qv| ≤ εvw, |q̃(t)

w − qw| ≤ εvw
)
.

Intuitively, this is saying that ê(t+1)
vw −κ(t)

vw > ρvw if q̃(t)
v and q̃(t)

w are close to qv and qw, respectively. Let ρ = min(v,w)∈S ρvw
and ε = min(v,w)∈S εvw. Then we have

P

 ⋂
(v,w)∈S

ê(t+1)
vw − κ(t)

vw ≥ ρ

 ≥ P

 ⋂
z∈[C]

|q̃(t)
z − qz| ≤ ε

 (12)

= 1−P

 ⋃
z∈[C]

|q̃(t)
z − qz| ≥ ε

 (13)

≥ 1−
C∑
z=1

P
(
|q̃(t)
z − qz| ≥ ε

)
(Union Bound) (14)

≥ 1−
C∑
z=1

2 exp
(
−2nε2

)
(using Lemma C.1)

= 1− 2C exp
(
−2nε2

)
. (15)

Now, we show that ê(t+1)
vw is close to κ(t+1)

vw . We know that κ(t+1) ∼ 1
nMultinomial(n, ê(t+1)). Let the event Q(t) =⋂

z∈[C] |q̃
(t)
z − qz| ≤ ε. Using Lemma C.3, we know that, under Q(t), for some constant ηvw, we have

∣∣∣ê(t+1)
v − κ(t+1)

v

∣∣∣ < ηvw
C

and
∣∣∣ê(t+1)
w − κ(t+1)

w

∣∣∣ < ηvw
C

=⇒ ê(t+1)
vw − κ(t+1)

vw < ρ,

where 0 < ηvw <
κ

(t+1)
v (qv − ε) + κ

(t+1)
w (qw − ε)

maxz∈[C] κ
(t+1)
z (qz + ε)

=⇒ P
(
ê(t+1)
vw − κ(t+1)

vw < ρ
∣∣Q(t)

)
≥ P

(∣∣∣ê(t+1)
v − κ(t+1)

v

∣∣∣ < ηvw
C
,
∣∣∣ê(t+1)
w − κ(t+1)

w

∣∣∣ < ηvw
C

)
.

Intuitively, this is saying that ê(t+1)
vw − κ(t+1)

vw < ρ if κ(t+1)
v and κ(t+1)

w are close to ê(t+1)
v and ê(t+1)

w , respectively. Thus, for
η = min(v,w)∈S ηvw, we have

P

 ⋂
(v,w)∈S

ê(t+1)
vw − κ(t+1)

vw ≤ ρ
∣∣∣Q(t)

 ≥ P

 ⋂
z∈[C]

|ê(t+1)
z − κ(t+1)

z | ≤ η

C


= 1−P

 ⋃
z∈[C]

|ê(t+1)
z − κ(t+1)

z | ≥ η

C


≥ 1−

C∑
z=1

P
(
|ê(t+1)
z − κ(t+1)

z | > η

C

)
(Union Bound)

≥ 1− 2C exp

(
−2nη2

C2

)
(using Lemma C.1). (16)
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Combining Eq. 15 and 16, we get the desired result as follows:

P

 ⋂
(v,w)∈S

A(t)
vw

 = P

 ⋂
(v,w)∈S

κ(t+1)
vw > κ(t)

vw


≥ P

 ⋂
(v,w)∈S

(
ê(t+1)
vw − κ(t)

vw ≥ ρ, ê(t+1)
vw − κ(t+1)

vw ≤ ρ
)

≥ P

 ⋂
z∈[C]

(
|ê(t+1)
z − κ(t+1)

z | ≤ η

C
, |q̃(t)

z − qz| ≤ ε
)

= P

 ⋂
z∈[C]

|ê(t+1)
z − κ(t+1)

z | ≤ η

C

∣∣∣Q(t)

P

 ⋂
z∈[C]

|q̃(t)
z − qz| ≤ ε


≥
(

1− 2C exp

(
−2nη2

C2

))(
1− 2C exp

(
−2nε2

))
≥ 1− 2C

[
exp

(
−2nε2

)
+ exp

(
−2nη2

C2

)]
≥ 1− 2C exp

(
−O

( n

C2

))
.

Proof of Theorem 5.2

Lemma C.4 (Convergence in Probability). Let Xn, Yn, and Z be random variables such that Xn
p→ Yn and Yn

p→ Z, then
Xn

p→ Z.

Proof. For any ε > 0, we have

P(|Xn − Z| ≥ ε) = P(|Xn − Yn + Yn − Z| ≥ ε)
≤ P(|Xn − Yn|+ |Yn − Z| ≥ ε)

≤ P
(
|Xn − Yn| ≥

ε

2

)
+ P

(
|Xn − Yn| ≥

ε

2

)
= 0.

Therefore, Xn
p→ Z.

Theorem. Suppose that qv > qw. As n→∞, κ(t)
vw

p→ 1− 1
1+ct , where c = qv

qw
.

Proof. At time step t, the fraction of recommendations from each group is κt. From group gv, the user cites papers
according to probability qv. Therefore, q̂(t)

v
p→ κ

(t)
v qv. And the normalized estimate is ê(t+1) = 1

S [κ
(t)
1 q1, . . . , κ

(t)
C qC ],

where S =
∑
z∈[C] κ

(t)
z qz . Since κ(t+1) ∼ 1

nMultinomial(n, ê(t+1)), we have

κ(t+1) p→ ê(t+1)

κ
(t+1)
v

κ
(t+1)
w

p→ qvκ
(t)
v

qwκ
(t)
w

= c
κ

(t)
v

κ
(t)
w

. (17)
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Table 5. The distribution of the FOS in the two real-world datasets.
FOS DATASET 1 DATASET 2

ART 0.03% 0.08%
BIOLOGY 26.48% 23.43%
BUSINESS 0.38% 0.10%
CHEMISTRY 10.11% 15.67%
COMPUTER SCIENCE 9.40% 3.42%
ECONOMICS 2.51% 0.03%
ENGINEERING 6.24% 17.98%
ENVIRONMENTAL SCIENCE 0.13% 0.03%
GEOGRAPHY 0.48% 0.40%
GEOLOGY 1.45% 0.46%
HISTORY 0.04% 0.03%
MATERIALS SCIENCE 3.06% 19.09%
MATHEMATICS 7.17% 1.03%
MEDICINE 21.28% 13.90%
PHILOSOPHY 0.03% 0.01%
PHYSICS 2.99% 3.14%
POLITICAL SCIENCE 0.18% 0.01%
PSYCHOLOGY 7.49% 1.14%
SOCIOLOGY 0.55% 0.05%

We know that κ
(1)
v

κ
(1)
w

p→ c. Combining this with Eq. 17 and using Lemma C.4 recursively, we get

κ
(t)
v

κ
(t)
w

p→ ct

∴ 1− 1

1 + κ
(t)
v

κ
(t)
w

p→ 1− 1

1 + ct
(Continuous mapping theorem)

∴
κ

(t)
v

κ
(t)
v + κ

(t)
w

p→ 1− 1

1 + ct

∴ κ(t)
vw

p→ 1− 1

1 + ct
.

D. Experiments
Table 5 provides the distribution of the various FOS in both the datasets used for the real-world dataset experiments
(Section 6.2). We can see that the FOS distributions are different. For example, Dataset 2 has substantially more Materials
Science and Engineering papers.


