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Abstract

Foundation Language Models (FLMs) such as
BERT and its variants have achieved remark-
able success in natural language processing.
To date, the interpretability of FLMs has pri-
marily relied on the attention weights in their
self-attention layers. However, these atten-
tion weights only provide word-level interpreta-
tions, failing to capture higher-level structures,
and are therefore lacking in readability and
intuitiveness. To address this challenge, we
first provide a formal definition of conceptual
interpretation and then propose a variational
Bayesian framework, dubbed VAriational Lan-
guage Concept (VALC), to go beyond word-
level interpretations and provide concept-level
interpretations. Our theoretical analysis shows
that our VALC finds the optimal language con-
cepts to interpret FLM predictions. Empirical
results on several real-world datasets show that
our method can successfully provide concep-
tual interpretation for FLMs.

1 Introduction

Foundation language models (FLMs) such as
BERT (Devlin et al., 2018) and its variants (Lan
et al., 2019; Liu et al., 2019; He et al., 2021; Portes
et al., 2023) have achieved remarkable success in
natural language processing. These FLMs are usu-
ally large attention-based neural networks that fol-
low a pretrain-finetune paradigm, where models are
first pretrained on large datasets and then finetuned
for a specific task. As with any machine learn-
ing models, interpretability in FLMs has always
been a desideratum, especially in decision-critical
applications (e.g., healthcare).

To date, FLMs’ interpretability has primarily
relied on the attention weights in self-attention lay-
ers. However, these attention weights only provide
raw word-level importance scores as interpretations.
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Dataset-Level Document-Level Word-Level

Concept 20: Speaker Sentence 1: He playfully chided

Government |*¢3!delegation the Senate’s little bitty tax relief
suspect plan.

Sentence 2: We don’t need a

little bitty tax relief plan.

Concept 24:
Politics
Task: Decide whether Sentence 1
paraphrases Sentence 2.

Label: True
Prediction: True

scott
Concept 27: shelley,

Names mary

Figure 1: Visualization of VALC’s learned concepts.
A document consists of two sentences. The task is
to decide whether ‘Sentence 1’ paraphrases ‘Sentence
2’. Left: Dataset-level concepts for MRPC dataset
with 3 concepts and their nearest word embeddings.
Middle: Document-level concept strength, showing
that this document is mostly related to Concept 20 and
Concept 24. Right: Word-level concepts, where the
FLM correctly predicts the label to be ‘“True’, and VALC
interprets that this is because the both sentences consist
of words with Concept 24, i.e., Politics.

Such low-level interpretations fail to capture higher-
level semantic structures, and hence lack readabil-
ity, intuitiveness and stability. For example, low-
level interpretations often fail to capture influence
of similar words to predictions, leading to unstable
or even unreasonable explanations (see Sec. 5.4
for details). In this paper, we aim to go beyond
word-level attention and interpret FLM predictions
at the concept level; see an example in Fig. 1. Such
higher-level semantic interpretations are comple-
mentary to word-level importance scores and often
more readable and intuitive.

We start by developing a comprehensive and for-
mal definition of conceptual interpretation with
four desirable properties: (1) multi-level structure,
(2) normalization, (3) additivity, and (4) mutual
information maximization. With this definition,
we then propose a variational Bayesian framework,
dubbed VAriational Language Concept (VALC), to
provide dataset-level, document-level, and word-
level (the first property) conceptual interpretation
for FLM predictions. Our theoretical analysis



shows that maximizing our VALC’s evidence lower
bound is equivalent to inferring the optimal con-
ceptual interpretation with Properties (1-3) while
maximizing the mutual information between the in-
ferred concepts and the observed embeddings from
FLMs, i.e., Property (4).

Drawing inspiration from hierarchical Bayesian
deep learning (Wang and Yeung, 2016, 2020; Wang
et al., 2016), the core of our idea is to treat a FLM’s
contextual word embeddings (and their correspond-
ing attention weights) as observed variables and
build a probabilistic generative model to automati-
cally infer the higher-level semantic structures (e.g.,
concepts or topics) from these embeddings and at-
tention weights, thereby interpreting the FLM’s
predictions at the concept level. Our VALC is com-
patible with any attention-based FLMs and can
work as an conceptual interpreter, which explains
the FLM predictions at multiple levels with theoret-
ical guarantees. Our contributions are as follows:

* We identify the problem of multi-level interpre-
tations for FLM predictions, develop a formal
definition of conceptual interpretation, and
propose VALC as the first general method to
infer such conceptual interpretation.

* Theoretical analysis shows that learning VALC
is equivalent to inferring the optimal concep-
tual interpretation according to our definition.

* Quantitative and qualitative analysis on real-
world datasets show that VALC can infer mean-
ingful language concepts to effectively and in-
tuitively interpret FLM predictions.

2 Related Work

Foundation Language Models. Foundation lan-
guage models are large attention-based neural net-
works that follow a pretrain-finetune paradigm.
Usually they are first pretrained on large datasets
in a self-supervised manner and then finetuned for
a specific downstream task. BERT (Devlin et al.,
2018) is a pioneering FLM that has shown impres-
sive performance across multiple downstream tasks.
Following BERT, there have been variants (He
et al., 2021; Clark et al., 2020; Yang et al., 2019;
Liu et al., 2019; Lewis et al., 2019) that design dif-
ferent self-supervised learning objectives or train-
ing schemes to achieve better performance. While
FLMs offer attention weights for interpreting pre-
dictions at the word level, these interpretations lack

readability and intuitiveness because they fail to
capture higher-level semantic structures.

Interpretation Methods for FLMs. Existing
conceptual interpretation methods for FLMs typi-
cally rely on topic models (Blei et al., 2003; Blei
and Lafferty, 2006; Blei, 2012; Wang et al., 2012;
Chang and Blei, 2009) and prototypical part net-
works (Chen et al., 2019). There has been re-
cent work that employs deep neural networks to
learn topic models more efficiently (Card et al.,
2017; Xing et al., 2017; Peinelt et al., 2020), using
techniques such as amortized variational inference.
There is also work that improves upon traditional
topic models by either leveraging word similarity as
aregularizer for topic-word distributions (Das et al.,
2015; Batmanghelich et al., 2016) or including
word embeddings into the generative process (Hu
et al., 2012; Dieng et al., 2020; Bunk and Kres-
tel, 2018; Duan et al., 2021). There is also work
that builds topic models upon embeddings from
FLMs (Grootendorst, 2020; Zhang et al., 2022;
Wang et al., 2022; Zhao et al., 2020; Meng et al.,
2022). However, these methods often rely on a
pipeline involving dimensionality reduction and ba-
sic clustering, which is not end-to-end, leading to
potential information loss between FLM embed-
dings and clustering outcomes. This can result in
unfaithful interpretations for the underlying FLM.
Additionally, they typically generate interpretations
at a single level (e.g., document level), lacking a
multi-level conceptual structure.

Beyond topic models, attribution-based ap-
proaches such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) assign impor-
tance to input features to explain predictions. Con-
cept bottleneck models (CBMs) (Koh et al., 2020;
Yuksekgonul et al., 2023; Yang et al., 2023; Kim
et al., 2018; Schulz et al., 2020; Paranjape et al.,
2020; Schrouff et al., 2021) offer interpretations by
learning conceptual activation and then performing
classifications on these concepts, while inherent
models (Xie et al., 2023; Ren et al., 2023; Shi et al.,
2021) focus on model redesign/re-training for in-
terpretability. However, these approaches often re-
quire extra supervision or re-training, making them
unsuitable for our setting. In contrast, our method
is inherently multi-level and end-to-end, models
concepts across dataset, document, and word lev-
els, and produces faithful post-hoc interpretations
for any models based on FLMs with theoretical
guarantees.



3.2 Formal De nition of Language Concepts

Below we formally de ne “conceptual inter-
pretation' for FLM predictions (see notations
in Sec. 3.1):

De nition 3.1 (Conceptual Interpretation). As-
sumeK concepts and a datagetcontainingM
documents, each with, words@ m M).
Conceptual interpretation for a documemtcon-
sists of K dataset-levelvariablesf ygf.,, a
document-levevariable ,, andJ, word-level
Figure 2: Overview of VALC framework. variablesf ; 9}121 with the following properties:
(1) Multi-Level Structure. Conceptual interpreta-
tion has a three-level structure:
3 Methods (a) Eachdataset-leveVvariable  =( ,; )
describes thé'th concept; , 2 RY and
« 2 RY d denote the mean and covariance
of thek'th concept in the embedding space
(i.e.,em 2 RY), respectively.
(b) Eachdocument-levelariable , 2 RK,

_ describes documemb's relation to theK
We consider a corpus & documents, where the concepts.

m'th document containd,, words, and a FLM (c) Eachword-levelvariable ., 2 RKO de-
f (Dm), which takes as input the document(de- scribes word 's relation to theK concepts.

noted asDm) with Jm words and outputs (1) @ (2) Normalization. The document- and word-
CLS embeddingm 2 R, (2) Jm contextual word level interpretations, m and ; , are normal-

In this section, we formalize the de nition @on-
ceptual interpretationand describe our proposed
VALC for conceptual interpretation of FLMs.

3.1 Problem Setting and Notation

embedding®m , [em ]j‘]:ml,and (3) the attention ized:

Weightsaﬁ?) , [afnhj)]fg“l between each word and () p E=l mk = 1 for documenm.

the last-layer CLS token, wheledenotes thé'th (b) Ezl mik = 1 for wordj in documenm.
attention head. We denote thep@lverage attentiof8) Additivity. We can add/subtract tHes con-
weight over H heads a&y,; = Hi Ezl afnhj) and cept from the contextual embeddings; of
correspondinghyam , [am %y (see the FLM wordj in documentm, i.e.,emj  €mj

at the bottom of Fig. 2). In FLMs, these last- Xk «k (X is the editing weight of concej.
layer CLS embeddings are used as document-levéf) Mutual Information Maximization. The con-
representations for downstream tasks (e.g., docu- Ceptual interpretation achieves maximum mu-
ment classi cation). Furthermore, our VALC as-  tual information between the observed em-
sumesK concepts (topics) for the corpus. For ~ beddingsen, in FLMs and the document-
documentm, our VALC interpreter tries to in- level/word-level interpretation,m and ;.

fer a concept distribution vector,, 2 RX (also In De nition 3.1, Property (1) provides compre-
known as the topic proportion in topic models)hensive three-level conceptual interpretation for
for the whole document and a concept distribuFLM predictions, Property (2) ensures proper nor-
tion vector . = [ mx ]z, 2 R® for word  malization in concept assignment at the document
j in documentm. In our continuous embedding and word levels, Property (3) enables better concept
space, thé'th concept is represented by a Gausediting (more details in Sec. 5.3) to modify FLM
sian distributionN ( ; ), of contextual word predictions, and Property (4) ensures minimal in-
embeddings; we use shorthang = ( ; «) for  formation loss when interpreting FLM predictions.
brevity. The goal is to interpret FLMs' predictions

at the concept levalsing the inferred document- 3.3 VAriational Language Concepts (VALC)

level concept vector,, word-level concept vec- Method Overview. Drawing inspiration from hier-
tor ., , and the learned embedding distributionsarchical Bayesian deep learning (Wang and Yeung,
fN ( «; koK., for each concept (see Sec. 5.42016, 2020; Wang et al., 2016; Mao et al., 2022;
for detailed descriptions and visualizations). Yan and Wang, 2023; Xu et al., 2023; Wang et al.,



different documents, and they de ne a mixture of
K Gaussian distributions. Each Gaussian distribu-
tion describes a “cluster' of words and their contex-
tual word embeddings.

Similarly, interpretations of FLM predictions at
the data-instance level is equivalent to inferring the
latent variables, i.e., document-level concept distri-
bution vectors , and word-level concept indices
Zmj - Below we highlight several important aspects
of our VALC designs.

Attention Weights as Continuous Word
2024), we propose our model, VAriational Lan-Counts.  Different from typical topic mod-
guage Concepts (VALC), to infer the optimal con-els (Blei et al., 2003; Blei, 2012) and word em-
ceptual interpretation described in De nition 3.1.beddings (Mikolov et al., 2013) that can only han-
Different fromstaticword embeddings (Mikolov dle discreteword counts, our VALC can handle
et al., 2013) and topic models, FLMs produmm-  continuoug\virtual) word counts; this better aligns
textualword embeddings with continuous-value enwith continuous attention weights in FLMs. Specif-
tries[em; ]J-ng and more importantly, associate eachically, we denote awm; 2 R o the (non-negative
word embedding with a continuous-value attentionreal-valued)continuous word countor the j 'th
weight[am; ]Jf":“l : therefore this brings unique chal- word in documenin. We explore three schemes of
lenges. computingw; :

To effectively discover latent concept structures < ldentical Weights: Use identical weights for
learned by FLMs at the dataset level and interpret  different words, i.e.wymj =1;8m;j. Thisis
FLM predictions at the data-instance level, our  equivalent to typical discrete word counts.
VALC treats both the contextual word embeddings ¢ Attention-Based Weights with Fixed Length:
and their associated attention weights as observa- Usewm = J%m;, whereJ®is a xed se-
tions to learn a probabilistic generative model of  quence length shared across all documents.
these observations, as shownin Fig. 2. The key idea » Attention-Based Weights with Variable
is to use the attention weights from FLMs to com-  Length: UseWy = Jmam = ’m ami , Wwhere
pute a virtual continuous count for each word, and  J, is true sequenceFLength without padding.
model the contextual word embedding distributions  Note that in practice, iJ:ml ami 6 1 due to
with Gaussian mixtures. The generative process of padding tokens in FLMs.

VALC is as follows (we mark key connection 1o Contextual Continuous Word Representa-
FLMs in blue and show the corresponding graphitions. Note that different from topic models (Blei

Figure 3: Graphical model of our VALC. Thetriped
circle representsontinuousvord counts.

cal model in Fig. 3): etal., 2003) and typical word embeddings (Mikolov
For each documemh;1 m M, et al., 2013; Dieng et al., 2020) where word repre-
1. Draw the document-level concept distribution sentations arstatic, word representations in FLMs
vector , Dirichlet( ). arecontextual speci cally, the same word can have
2. Foreachword (1 j Jm), different embeddings in different documents (con-
(a) Draw the word-level concept indez; texts). For example, the word “soft' can appear as
Categoricd ). thej1'th word in documentim; and as theg'th

(b) With a continuous word county,; 2 R word in documenimy, and therefore have two dif-
from the FLM's attention weights, Draw ferent embeddings (i.6m,j, 6 €m,j,)-
the contextual word embedding of the FLM  Correspondingly, in our VALC, we do not con-
from the corresponding Gaussian componenstrain the same word to have a static embedding;
emi N ( 2,7 zm)- instead we assume that a word embedding is drawn
Given the generative process above, discoWrom a Gaussian distribution corresponding to its
ery of latent concept structures in FLMs at thelatent topic. Note that word representations in our
dataset level boils down to learning the parameter$¥ALC is continuous, which is different from typi-
fo kgE=1 for the K concepts. Intuitively the cal topic models (Blei et al., 2003) based on (dis-
global parameters ; gk., are shared across crete) bag-of-words representations.



3.4 Objective Function virtual continuous (real-valued) word counts (dis-

Below we discuss the inference and learning procussed in Sec. 3.3). Speci cally, we de ne the
cedure for VALC. We start by introducing thie-  IKelihood in the third term of Eq. 2 as:

ferenceof document-level and word-level concepts
(i.e.,zmj and n) given the global concept param-
eters (i.e.f( ;)91 ), and then introduce the Note that Eq. 3 is the likelihood afiy; (virtual)
learning of these global concept parameters. words, wherewy; is a real value derived from
the FLM's attention weights (details in Sec. 3.3).
Therefore, in the third item of Eq. 2, we have:

Pem iZm i 2y i g )=IN(em i oy om0 (3)

3.4.1 Inference

Inferring Document-Level and Word-Level Con-
cepts. We formulate the problem of interpret-

_ . _ Eqllog p(em jzm i oy i 2y )]
ing FLM predictions at the concept level as in- X
. = mik Wmj 10g N (emj J ; «)
ferring document-level and word-level concepts. x )
Speci cally, given global concept parameters = | mk Wm £ Sem )T Cem k)
. K H
F( & K)G=y ., thecontextuaword embeddings ogl@ )2 e 4
em , [em ]j ™, and the associated attention

weightsan, , [a—mj ]i]anl , @ FLM produces for each Update RuIes.Taking the derivative of the ELBO

documentn, our VALC infers the posterior distri- in EQ. 2 W.rt. mjk (see Appendix A for details)
bution of the document-level concept vectgs, and setting it td yields the update rule formjy :

i.e.,p( mjem;am;f( «; k)ok.;), and the poste- ey X
rior distribution of the word-level concept index mic [ PO ma) O mic0)
Zmj , -6, p(Zmj jem;am; F( «; K)OKe,)- %(emj OT W tem O (5)

Variational Distributions. These posterior dis- P
tributions are intractable; we therefore resort toyith the normalization constraint E:l mik =
variational inference (Jordan et al., 1998; Blei et al.,

2003) and use variational distributiogs mj ) ok = K+ X _Jm mik Wnj (6)
andqg(zmjj m ) to approximate them. Here,, 2 =1

K K K At
RY™ and [ mklzy 2 R™ arevariational yyhere [ K, is the hyperparameter for the

parameters to be estimated during inference. Thig); ichlet prior distribution of . In summary, the

leads to the following joint variational distribution: ; \tarence algorithm will alternate between updating

. o . ik forall (m;j; k) tuples and updating . for
aC m; f Zm, gf:lj mif i ng:1) alrlm(m;k) tuples. m

: Im .
= a( mj m) i=1 AZmii m): (1) 342 Leaming

Learning Dataset-Level Concept Parameters.
The inference algorithm in Sec. 3.4.1 assumes
availability of the dataset-level (global) concept
parameters ( ; k)gl‘le. To learn such these
parameters, one needs to iterate between (1) infer-
ring document-level variational parameterg as

well as word-level variational parameterg; in

Evidence Lower Bound. For each documem,
nding the optimal variational distributions is then
equivalent to maximizing the following evidence
lower bound (ELBO):

LCmif om0 f(C i )8ke1)

X
= Eqllogp( mj )+ JJ:ml Eqllog p(zmj | m)] Sec. 3.4.1 and (2) learning dataset-level concept
I _ parameter§( ; k)oK, -
* o Eallogp(em jzmj ;2,3 zmi )] Update Rules.Similar to Sec. 3.4.1, we expand

the ELBO in Eq. 2 (see Appendix A for details) and
set its derivative w.r.t. , and | to 0, yielding the

where the expectation is taken over the joint varial-deate rule for learning and
P

tional distribution in Eq. 1. i mk Wm €m
= B

Likelihood with Continuous Word Counts. pomi M W
One key difference between VALC and typical o mg mk W (em W) em WD )

topic models (Blei et al., 2003; Blei, 2012) is the ‘ mj  mik W

x m
Eoga( m)] 7, Eqlogazm )i (2)




Algorithm 1: Algorithm for VALC Algorithm 2: Algorithm for VALC Con-

Input: Initializedf ,oM_;,f no¥-;, cept Editing
andf gk, , documentsD ngM_; , Input: FLM f (), classierg(),
number of epochs T. classi cation losd_, documenD, with
fort=1:Tdo Jm words, labels/, constant factor .
form=1:M do forj=1:Jndo em =f(Dny)
Update ,, and |, using Eq. 5 and X = QP(em:f o)
Eq. 6, respectively. k =argmin L(g(emj ! Xy k);Ym)
Updatef gf., using Eq. 7. emi ©em ! X «
X K
Effect of Attention Weights. From Eq. 7, we min,ore K ey Xk Kk €m k?;
can observe that the attention weight of jlih _ X k
word in documentn, i.e.,am , affects the virtual subjectto x 0 and  _ Xk =1:

continuous word count,; (see Sec. 3.3), thereby Given learned concepts( ; «k)ok.;, VALC
affecting the update of the dataset-level concepbbtains this QP's optimal solution 2 RK and
center , and covariance . Speci cally, if we  add/subtract any concegtfrom arbitrary FLM
use attention-based weights with xed length orembeddingen, by: en em X, k. Alg. 2
variable length in Sec. 3.3, the continuous wordsummarizes thisoncept editingorocess; one can
countwn,; will be proportional to the attention also replacey,; with the CLS embeddingm for
weightay, . Therefore, when updating the conceptdocument-level editing (details in Appendix D).
center  as a weighted average of differentword Mutual Information Maximization. Theo-
embedding®n; , VALC naturally places more fo- rem 4.1 below shows that our inferred document-
cus on words with higher attention weigtds;  level and word-level interpretation, 5, and
from FLMs, thereby making the interpretationsf mj gJ ™, satisfy Property (4), Mutual Informa-
sharper (see Sec. 5.4 for detailed results and Afion Maximization, in De nition 3.1.

pendix | for theoretical analysis). Theorem 41  (Mutual Information

h ical vsi Maximization). In Eq. 2, the ELBO
4 Theoretical Analysis L( o:f mjngl; H( 0 0dl,) is  up-
per bounded by the mutual information between
contextual embeddlngsem and multi-level
interpretation ;f mij gJ:1 in De nition 3.1.
Formally, with approximate posterio mj )
dd(zmjj mj), we have

In this section, we provide theoretical guarantee

of VALC on the four properties in De nition 3.1.
Multi-Level Structure. As shown in Alg. 1,

VALC (1) learns thedataset-leveinterpretation

f kgE:1 describing thek concepts, (2) infers the

distribution ofdocument-leveinterpretation L g (L K

for documentm, i.e.,q( mj ) (parameterized Cmifom G SFC 6 K)%e1)

by ), and (3) infers the posterior distribution of l(ém; m;fzm gf;“l) H(em); (8)

word-levelconcept index, i.eq(zmjj ), param-

eterized by ;. Such three-level interpretations where the entropy terH (em) is a constant.

correspond to Property (1) in De nition 3.1. From Theorem 4.1 we can see that maximiz-
Normalization. The learned variational distribu- ing the ELBO in Eq. 2 is equivalent to maximiz-
tiong( mj m) (described in Eg, 1)is a Dirichlet ing the mutual information between our document-
distribution; therefore we have |_; mk = 1. leveliword-level concepts and the observed contex-
Thepupdate of nj (Eq. 5)is naturally constrained tya| embeddings in FLMs (proof in Appendix H).
by k 1 mk = 1 since mj parameterizes a In summary, VALC enjoys all four properties
Categorical distribution (ovety; ). in De nition 3.1 and therefore generates the opti-
Additivity . VALC is able to performConcept mal conceptual interpretation for FLMs. In con-
Editing, i.e, add/subtract the learned concept actitrast, state-of-the-art methods only satisfy a small
vation  from FLMs via the following Quadratic part of them (Table 1 and Sec. 5.2). In Appendix |,
Programming (QP) problemx( = [xk]K.;): we provide theoretical guarantees that (1) under



mild assumptions our VALC can learn better con-Table 1: Comparing methods on the properties in De -
ceptual interpretations for FLMs for in noisy data hition 3.1 (MIM: Mutual Information Maximization).
and (2) attention-based schemes is superior to the

) - . . Model Multi-Level Normalization Additivity MIM
identical scheme (described in Sec. 3.3). SHAPILIME  No No Partial ~ No
BERTopic No Hard Partial No
CETopic No Hard Partial No
5 Experiments VALC Yes Soft Full  Yes

5.1 Experiment Setu . .
P P 5.2 Comparison on Four Properties

Datasets.We use three datasets in our experiments,  in De nition 3.1

namely 20 Newsgroups, M10 (Lim and Buntine, |, gec. 4 we show that VALC satis es the four

2015), and BBC News (Greene and Cunninghamy,,herties of conceptual interpretation in De ni-
2006). For preprocessing details, see Appendix Giop 3 1. | contrast, baseline models do not neces-

Baselines. We compare our method with the sarily learn concepts that meet these requirements.
following state-of-the-art baselines: Table 1 summarizes the comparison between VALC
* SHAP and LIME (Lundberg and Lee, 2017; andthe baselines. We can see that VALC is superior
Ribeiro et al., 2016) are interpretation methto baselines in terms of the following four aspects:
ods that attribute importance scores to inpui1) Multi-Level Structure. Baselines either apply

features. In this paper, we use embeddings of
"CLS' token as input to SHAP/LIME.

« BERTopic (Grootendorst, 2020) is a
clustering-based model that uses HDB-
SCAN (Mclnnes and Healy, 2017) to cluster
sentence embeddings from BERT, performs
Uniform Manifold Approximation Projection
(UMAP) (Mclnnes et al., 2018), and then
uses class-based TF-IDF (c-TF-IDF) to obtain

words for each cluster. 2)

» CETopic (Zhang et al., 2022) is a clustering-
based model that rst uses UMAP to per-
form dimensionality reduction on BERT sen-
tence embeddings, performs K-Means clus-
tering (Lloyd, 1982), and then uses weighted
word selection for each cluster.

Evaluation Metric. Inspired by Koh et al.

(2020), we perform concept editing experiments(3) Additivity.

to evaluate conceptual interpretation for FLMs;
higheraccuracy gairafter editing indicates better
interpretation performance. We leverage BERT-

base-uncased (Devlin et al., 2018) as the contextu&f) Mutual Information Maximization.

clustering algorithms directly on the document-
level embeddings from FLMs or assign impor-
tance scores to input features, and thus can
only provide single-level interpretation, ne-
cessitating complex post-processing to gener-
ate dataset-level concepts. In contrast, VALC
adopts an integrated approach, learning con-
cepts at the dataset, document, and word level
in a joint, end-to-end manner.
Normalization. BERTopic and CETopic
assign each word to exactly one concept
and therefore satis eshard-normalization.
SHAP/LIME produce importance scores that
are not normalized. In contrast, VALC learns
fractional concept interpretations,, and

mj and therefore satis esoftnormalization,
which is more exible and intuitive.
Baselines perform addition or
subtraction of concepts only at a single level
(word/document), while our additivity and con-
cept editing (Alg. 2) work for both levels.
Base-

embedding model, and use accuracy on the test set lines either use a multi-step pipeline or produce

as our metric. For details, see Appendix D.

We can perform concept editing on either input

tokens or contextual embeddings of FLMs. Specif-

ically, we can performhard concept editing for

importance scores; they are therefore prone to
lose information between FLM embeddings
and nal clustering/scoring results. In contrast,
VALC is theoretically guaranteed to maximally
preserve information (Theorem 4.1).

conceptk by directly removing tokens that belong
concepk (applicable for hard clustering methods
such as our baselines); we could also perfeoft

concept editing for concetby removing concept Accuracy Gain. We perform greedy concept edit-
subspace vectors from contextual embeddmgs ing (Koh et al., 2020) for BERTopic, CETopic, and
(applicable for VALC using Alg. 2). our VALC to evaluate the quality of their learned

5.3 Concept Editing Results



Table 2: Accuracy gain on 20 Newsgroups (20NG), 54 Conceptual Interpretation (More for
M10, and BBC News (BBC) (%).We mark the best re- Different Tasks in Appendix F)
sults withbold faceand the second best witmderline
Dataset-Level Interpretations. As a case study,

Unedited‘ JME BERTopic CETopic VALC|{Del®  we train VALC on M10, samplé concepts (topics)

51.26 ‘ 6174 6076 6193 62.54‘ 64.38 from the dataset, and plot the word embeddings of
10.48 9.50 _10.67 11.28| 13.12 .

o 7a ‘ 7560 7670 7918 80'74‘ 6264 the top WOFdS (cIo_sesF to the centey) in these con-
586  7.05  9.44 11.00| 1280 cepts using PCA in Fig. 4(left and middle). We can

B2 T T Ee W observe Concept 5 is mostly about data analysis,

including words such as “sampling' and “similar-

N ity'. Concept 84 is mostly about reasoning, with

Table 3:VALC Ed|t|ng ACCUI’acy (%) We mark the Words ‘explore" ‘aCCept', ‘explaln" etc. Concept

best results wittbold face, second best witnderline &5 g mostly about nature, with words “environ-

Dataset Unedited| Random Unweighted Weight%t'z:ggag)e ment', “formation’, “growth’, etc. IS

20 Newsgroups 51.26 | 51.13 5463  62.54 | 64.38 mostly abO_Ut , with WOt‘d.S term’, ‘sum-
M10 69.74 | 69.76 73.56 80.74 | 8254 mer', ‘heatmg" etc. is mosﬂy about
BBC News 93.72 93.72 95.52 96.41 97.76

, with words “forthcoming', “prospect’,
‘grow', etc. Concept 74 is mostly about social con-
concepts. Higher accuracy gain after pruning inditact, containing words such as “peer', “connect’,
cates better performance. and “collaborative'. Interestingly,

Table 2 show the results for different methods and Concept 74 (social contact) are both
in three real-world datasets, where “Finetune (Of€lated to social science and are therefore closer
acle)' refers to netuning both the backbone and!© €ach other in Fig. 4(middle), while ot
the classi er of BERT. VALC's concept editing can Is farther away, showing VALC's cability
improve the accuracy upon the unedited model bypf €apturing concept similarity. _ _
more tharL1%in 20 Newsgroups and M10, almost Document-Level Interpretations. Fig. 4(right)
on par with “Finetune (Oracle)’. Compared with shc_)ws that VALC can proviQe conceptual interpre—
the baselines, VALC achieves the most accurac{ftions on why correct or incorrect FLM predic-
gain in 20 Newsgroups and M10 and the second©ns happen for speci ¢ documents. For exam-
most accuracy gain in BBC News, demonstrating?!e; document (€) belongs to classii#b{ogy), but
the effectiveness of VALC's four properties in Def- BERT misclassi es it as class $cial sciencg
inition 3.1. Note that SHAP and LIME both inter- 0ur VALC interprets that this is because document
pret the CLS token's embedding and therefore hat€) involves » Which is re-

identical accuracy gain (details in Appendix D). 1ated tosocial science On the other hand, docu-
ment (b) is related to machine learning and BERT

Ablation Study. Thanks to its full additivity correctly classi es it as class 8¢mputer sciencg;

(De ”'tg?’? 3.1) XALC 'S _ca;?ag_le ofglﬁe;ent .CQE VALC interprets that this is because document (b)
cept editing schemes, including Random, Minvolves Concept 5 (data analysis).

weighted', and Weighted'. Speci callyweighted Word-Level Interpretations. Fig. 4(right) also

pruning uses the concept editing a'go””‘”? in Alg. 2shows that VALC can interpret which words and
with the optimal hyperparametér, unweighted .

. Alg. 2 with = 1- rand . what concepts of these words lead to speci ¢ FLM
prl:nlngdrunls .gk Wit = 2, rl?g fo?.p”r.ugmg predictions. For example, document (f) belongs to
rstrandomly picks a concepit ( K Q) class 7 petroleum chemistry), but BERT misclas-

| =1=
sets! xi =1=K, and th?n runs Alg. 2. Table 3 si es it as class 04griculture); VALC attributes
shows accuracy for VALC's different schemes. As_, . o .
this to the word "air', which belongs to

expected, random pruning barely improves upon . For document (b), VALC interprets that

the unedited model. Unweighted pruning improvesBERT correctly classi es it as class 8qmputer

) . =0 \
upon the unedited model ly5 ~ 3:5%. Weighted sciencé because the document contains the word

pruning improves the accuracy by aroub#i% K t .
. that bel toC t 5 (dat I .
upon the unedited model on 20 Newsgroups and ernel that belongs to Concept 5 (data analysis)

M10. See Appendix G for more quantitative re-6  Conclusion
sults. For example, Table 6 shows the that VALC
outperform baselines on ttiaithfulnessscore. We address the challenge of multi-level interpre-



Figure 4: Visualization of VALC's three-level conceptual interpretatibeft and Middle: Dataset-level interpreta-
tion with 6 concepts' , and ¢ with nearest word embedding3 ¢oncepts per plot for clarityRight: Top words
in each concept anBlexample documents with the associated document-level and word-level interpretations.

tations for FLM predictions by de ning concep- Amazon Faculty Research Award for their gener-
tual interpretation and introducing VALC, the rst ous support. Additionally, we thank the anonymous
method to infer such interpretations effectivelyreviewers and the area chair/senior area chair for
Empirical results are promising, and theoreticatheir thoughtful feedback and for recognizing the
analysis con rms that VALC reliably produces op- signi cance and contributions of our research. Fi-
timal conceptual interpretations by our de nition. nally, we would like to thank the Center for Al

Safety (CAIS) for providing the essential comput-
7 Limitations ing resources that enabled this work.
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A Details on Learning VALC

Update Rules.Similar to Sec. 3.4.1 of the main paper, we expand the ELBO in Eq. 2 of the main paper,
take its derivative w.r.t. , and set it t:

@L_ X
@ mik Wmj  (emj ) =0; )
m;j
yielding the update rule for learning;:
=]
= i ik Wmi Smi (10)

mj mk Wmj
where ! is canceled out. Similarly, setting the derivatives w.r.tto 0, i.e.,

@L 1X
@7k = > mijk Wmij ( K 1+ K 1(emj k)(em; k)T K 1); (11)
m;j

we have

P T
mj  mik Wi (€m k) (Emj K)

k =

12
mj  mjk Wmj (12)

Figure 5: Probabilistic graphical model of smoothed VALC.

Smoothing with Prior Distributions on f( ; k)gE=1 . To alleviate over tting and prevent singularity
in numerical computation, we impose priors distributions grand ¢ to smooth the learning process
(Fig. 5). Speci cally, we use a Normal-Inverse-Wishart prior onand ;:

k IW (0 o)
kok N (o k=0);
where o, o, o, and g are hyperparameters for the prior distributions. Taking the expectationg of
and | over the posterior distibutioNIW ( ; «j (™; M: ™M, My \we have the update rules as:
0 0 + Nk ~k. (13)
o+ Nk
o+ Skt S (= o~k o)
o+t ng K 1 ’

Sk = my ik W (em ~W)(em =)' (15)

Kk Enw [ «]=

(14)

k  Enw [ «]l=

whereny = mj  mik Wmj is the total virtual word counts used to estimateand . Eq. 13 and Eq. 14
are the smoothed version of Eq. 7 of the main paper. From the Bayesian perfective, they correspond to the



expectations of 's and 's posterior distributions. Alg. 1 of the main paper summarizes the learning
of VALC.

Online Learning of |, and . Note that FLMs are deep neural networks trained using minibatches
of data, while Eq. 13 and EqQ. 14 need to go through the whole dataset before each update. Inspired

by Hoffman et al. (2010); Oord et al. (2017), we using exponential moving average (EMA) to work with
minibatchs. Speci cally, we update them as:

K N +(1 ) B ~
K N kt(1 ) B T
N N+l ) B:

whereB is the minibatch sizé\ is a running count, and 2 (0; 1) is the momentum hyperparametes,
and T are the updated, and  after applying Eqg. 13 and Eq. 14 only on tbrrent minibatch
Effect of Attention Weights. Interestingly, we also observe that FLMs' attention weights on stop words
such as "the' and "a' tend to be much lower; therefore VALC can naturally ignore these concept-irrelevant
stop words when learning and inferring concepts (as discussed in Sec. 3.4.2). This is in contrast to typical
topic models (Blei et al., 2003; Blei, 2012) that require preprocessing to remove stop words.
Phrase-Level Interpretations. We can easily infer phrase-level concepts from word-level concepts by
treating phrases as sub-documents and adapting Eq. 6 (which provides document-level concepts) in the
paper. Speci cally, suppose for a given phrase spanning from-thevord to thes-th ngrd in document
m, we can adapt Eqg. 6 to provide phrase-level conceptual explanatiorﬁr%fés K+ fzr mik Wmj -

Here r(T:kS) is the strength of concejtfor the given phrase in documemt. In this way, r(T:kS) can serve
as the phrase-level concept explanation of the phrase spanning-ftomord to thes-th word; this is
another interesting complementary sub-document-level concept explanation between the word level and

the document level.

B Interpretation of the ELBO

VALC's evidence lower bound (ELBO), i.e., EqQ. 2 in the paper, is

. X Im _
LCmif muomi@ 5 O kg wk)®) = Bqllogp( mj )1+, ) Eqllogp(zm; | m)]
X 3. _
+ = Eq[log p(emj 1Zmj s zmj v zm )

X m
Eloga( m)] 7, Eqlloga(zm )l (16)

Derivation of the Evidence Lower Bound. We derive the evidence lower bound by com-

puting the log likelihood of each term. For example, by de nitiqW(em; jZmj; z, 7 zm ) =
(mj: mj: mj )Wmi , whereN () is the Gaussian distribution. Then we derive the third term
f;‘l Eqlogp(em; iZmj ; zu 2w )] iN EQ. 16 as follows:

X
Eqllog p(emj jzmj ; Zmj 1 Zm] )= mik Wmj I0OgN (€mjj «; k)

k
X

1
= mjk Wmj f E(emj o K 1(emj k)
K

logl(2 )*%j «j*?lg: (17)



Table 4: Dataset statistics, including the number of documéhis Yocabulary size\(), the number of corpus
categoriesl(), and the average document lengih).(

Dataset M \% L J

20 Newsgroups 16,309 1,612 20 48
M10 8,355 1,696 10 5.9
BBC News 2,225 2,949 5 120

Expanding the ELBO to the Loss Function.We can expand the ELBO in Eq. 2 of the main paper as:

« « X X X X
L( ;5 5f geesf oeer) =log  ( k) log (W+  (x DC W ( ko))
k=1 k=1 k=1 ko=1
XX X
+ k(O W ( ko))
j=1 k=1 ko=1
X e 1 T 14 d=2;  :1=2
+ ik w; f 2(91 KWk (8 k) log[(2 )™ «i7°lg
ik
X X X X
og (D g (0 (ke DC WD (o)
k=1 k=1 k=1 KO=1
XX
ik Iog ik - (18)
j=1 k=1

De nition and Interpretation of the Loss Function. We can interpret the meaning of each term of
ELBO as follows:

* Regularization Term for Document-Level Explanations. The sum of the rst and the fourth
terms, namelyEg[logp( mj )] Eglloga( m)], is equal to KL (q( m)jp( mj )), which is
the negation of KL Divergence between the variational posterior probabglity) and the prior
probabilityp( mj ) of the topic proportion , for documenm. Therefore maximizing the sum of
these two terms is equivalent to minimizing the KL DivergeKRde(da( m)jp( mj )); this serves as
a regularization term to make sure the infergédy,) is close to its prior distributiop( nj ).

» Regularization Term for Word-Level Explanations. Similarly, the sum of the second and the last
terms (ignoring the summation over the word ingle®r simplicity), namelyEq[log p(zmj ] m)]
Eqllogd(zmj )] is equal to KL (9(zZmj )jp(zmj ] m)). which is the negation of the KL Divergence
between the variational posterior probabilifz,; ) and the prior probability(zyn j m) of the
word-level topic assignmemt,; for wordj of documenim. Therefore maximizing the sum of these
two terms is equivalent to minimizing the KL Divergen§é (q(zm;j )jp(zmjj m)); this serves as a
regularization term to make sure the inferggdn,; ) is close to its “prior' distributiom(zmj j m).

ikelihood Term to Indicate How Much FLM Information is Explained. The third term

f:l Eqllog p(emj jzm; ; Zmj o Zmi )] is to maximize the log likelihoog@(em; jzm; ; Zmj ) Zm )
of every contextual embeddirgg,; (for wordj of documenim) conditioned on the inferrezh,; and
the parameterg 2o 3 Zmi ).

In this way, we expand the ELBO to a concrete loss function. Each line of Eq. 18 corresponds to the
expansion of each of the ve terms in the ELBO mentioned above (i.e., Eqg. 2 in the paper).

C Experimental Settings and Implementation Details

We will release all code, models, and data. Below we provide more details on the experimental settings
and practical implementation.

Data Preprocessing and More DatasetsWe follow Terragni et al. (2021) and Zhang et al. (2022)
to pre-process these datasets. The statistics of the datasets are summarized in Table 4. We use the
standard 8:1:1 train/validation/test set split. We also use the GLUE benchmark (Wang et al., 2018) to



performadditionalconceptual interpretation in this section and Sec. F. This benchmark includes multiple
sub-tasks of predictions, with the paired sentences as inputs. In this paper, we use 4 datasets from GLUE
(MRPC, RTE, STS-B, and QQP) to show contextual interpretations. Speci cally, we apply VALC to
multiple complex natural language understanding (NLU) tasks in the GLUE benchmark. For example,
in Appendix F, we show the three-level conceptual explanatioriewfdifferent tasksn the GLUE
benchmark using VALC, i.e.,

« Microsoft Research Paraphrase Corpus (MRPC)where the task is paraphrase identi cation and
semantic textual similarity,

« Recognizing Textual Entailment (RTE), where the task is to determine whether one sentence (the
premise) entails another sentence (the hypothesis),

« Semantic Textual Similarity Benchmark (STS-B) where the task is to measure the degree of
semantic similarity between pairs of sentences (from 0 to 5), and

* Quora Question Pairs (QQP) where the task is to classify whether one question is the duplicate of
the other.

Implementation. We implemented and trained the model using PyTorch (Paszke et al., 2019) on an
A5000 GPU with 24GB of memory. The training duration was kept under a few hours for all datasets.
We utilized the Adam optimizer (Kingma and Ba, 2014) with initial learning rates varying between
10 ® 10 3, tailored to the speci ¢ requirements of each dataset.

Visualization PostprocessingFor better showcase the dataset-level concepts as in Fig. 4 of the main
paper, we may employ simple linear transformations on the embedding of words after the aforementioned
PCA step, in order to scatter all the informative words on the same gures. However, for some datasets
such as STS-B, this is not necessary; therefore we do not use it for these datasets.

Topic (Concept) Identi cation. Inspired by Blei et al. (2003), we identify meaningful topics by listing
the top-5 topics for each word, computing the inverse document frequency (IDF), and ltering out topics
with the lowest IDF scores. Note that although GLUE benchmark are datasets that consists of documents
with small size, making it particularly challenging for traditional topic models (such as LDA) to learn
topics; interestingly our VALC can still perform well in learning the topics. We contribute this to the
following observations: (1) Compared to traditional LDA usiigcreteword representations, VALC
usescontinuousvord embeddings. In such a continuous space, topics learned for one word can also help
neighboring words; this alleviates the sparsity issue caused by short documents and therefore learns better
topics. (2) VALC's attention-based continuous word counts further improves sample ef ciency. In VALC,
important words have larger attention weights and therefore larger continuous word counts. In this case,
oneimportant word in a sentence possesses statistical (sample) power equivaterttipte words; this
leads to better sample ef ciency in VALC.

Computational Complexity. Our VALC introduces minimal overhead in terms of model training cost.
Speci cally, VALC's computational complexity i©(T Kd?2), whereT is the number of epochs (a small
number, such as 3, is suf cient for convergend€)is the number of concepts, adds the dimension of
the embeddings (in hidden layers). This means that VALC's computationascalsts linearlywith the
number of concept& (similar to existing methods).

More NLP Tasks. VALC can be naturally applied to other NLP tasks, such as named entity recognition
(NER), reading comprehension, or question answering. Speci cally, these tasks involve transformer
predictions from multiple positions within the context, rather than relying solely on the "CLS' token.
For example, NER predicts each token in the document as the beginning ('B') of an entity, the inside
(1" of entities, etc. To accommodate this and use VALC to explain each tpkethe context, we can
substitute the attention from the "CLS' token with (1) the attention from the "CLS' token to all tokens of
the previous layer with (2) the attention from toketo all tokens of the previous layer in transformers
(e.g., using the attention weights from the predicted label "B’ to all tokens of the previous laygrias
VALC). This adaptation allows VALC to maintain its explanatory power across various NLP applications,
demonstrating its versatility and effectiveness in a wide range of tasks.



D More Details on Concept Editing

We perform concept pruning to the CLS embeddings for VALC (details in Alg. 2). Since BERTopic and
CETopic can infer concepts (topics) only at the document level, their only choice is to prune a concept by
completely removing input tokens assigned to the concept (as mentioned in Sec. 5.1 and 5.2). To compare
our learned concepts with the baseline models, we rst follow their con gurations (Grootendorst, 2020;
Zhang et al., 2022) to x BERT model parameters when learning the topics/concepts, train a classi er on
top of the xed contextual embeddings, and then perform concept pruning (Koh et al., 2020) for different
evaluated models on the same classi er. Note that concept editing is deterministic; therefore, we conduct
our experiments with a single run.
Speci cally, we assume each BERT model contains a backbone and a classi er. To perform concept
editing:
(1) We rst train a classi er on top of thexed BERT embeddings generated by tked backbone to get
the original accuracy in the "Unedited' column (in Table 2 and Table 3 of the main paper).
(2) We then apply the same embedding cluster methods to these BERT embeddings to infer the con-
cepts/topics for each dataset.
(3) Finally, with the inferred concepts/topics from the baselines (SHAP/LIME, BERTopic and CETopic
in Table 2 of the main paper) and our VALC variants (Unweighted and Weighted in Table 3 of the
main paper), we perform concept editing and feed the concept-edited embeddings into the trained
classi er from Step (1) to compute the editing accuracy for different methods.
Since here ondoes not fully netune the BERT modek., keeping the backbone xed), the editing
accuracy is expected to be lower than the "Finetune' column (in Table 2 and Table 3 of the main paper),
which serves as the oracle. Table 2 of the main paper shows that our VALC learns better concepts than
the baselines, and Table 3 of the main paper shows that the weighted variant of VALC performs better.

Algorithm 3: Algorithm for VALC Document-Level Concept Editing

Input: FLM f (), classi erg( ), classi cation losd., datasefD mg¥_, , labelsy, constant factor
!

form=1:M do

Cm = f(Dm)

X = QP(Cm;f kgﬁzl)

k =argminf_; L(@(Cm ' Xg «):Ym)
Cm Cm ! X «

Note that SHAP and LIME both interpret the CLS token's embedding, and hence their concept vectors
have the same dimension as the FLM embedding vector (768 in our case). When we conduct concept
editing on thek'th dimension/concept, we simply subtract the CLS embedding's dimetsiath the
average value in the batch on dimenskofwhich means that we know little about the concept/dimension
k on this document), and keep values of the other dimensions unchanged. Note that the pruning process
is exactly the same for SHAP and LIME. Therefore SHAP and LIME have identical test accuracy and
accuracy gain.

Document-Level Concept Editing. We describe the document-level concept editing algorithm of
VALC in Alg. 3. ¢y, denotes the "CLS' embedding of documen{see Fig. 2 of the main paper).

E Connections Between the De ned Properties and Empirical Results

VALC is able to show which words or embeddings contributed to the document-level cdncepeci -
cally, our variational parameter (a vectory, 2 RX describes how much wojdcontributes to document
m. For example, th&-th entry of ,;, denoted as ymjk in the paper, describes how much wgrd
contributes to documemt in terms of concepk. Therefore, one could usgg max;, mjx to ndthe
word that contributes most to documents conceptk. Below, we will explain these four properties
using Fig. 4 as a running example.

(1) Multi-Level Structure ensures that VALC learns the dataset-, document-, and word-level concepts
jointly. In Fig. 4:



— Dataset-levelconcepts are highlighted by the top words of each concept (the top right box of
Fig. 4) and the distribution of their embeddings in the FLM (left and middle gures of Fig. 4);
for example Concept 5 (data analysis3 marked in red.

— Document-levelconcepts are demonstrated by each document's topic; for instance, in the box
for document (a) in Fig. 4 (right), VALC identi eJopic (Concept) &s key to the FLM's
prediction of the label 3 (computer science).

— Word-level concepts are identi ed by words in documents. For example, in the box for
document (a) in Fig. 4, VALC highlights the words "genetic' and "neural' because they are
highly related toConcept 5 (data analysis)Terms like “genetic algorithms' and “neural
networks' are related to data analysis, aligning with the document-level concept.

(2) Normalization ensures that concept learning is regulated and smoothed, with inferred concepts
appearing reasonable. Speci cally, in the document-level explanatioand word-level explanation
Pm‘ , all concepts arE aSS|gned a value within the rand® ofl, and all entries sumupto 1, i.e.,

k.. mik =land [, mk =1. Thisintroduces ‘competition' among different concepts; a
larger strength for one concept means smaller strength for other concepts. Therefore, together with
the help of the Dirichlet prior, it implicitly encourages sparser concept-level explanatignshich
are more aligned with humans' cognitive processes and more human-understandable (humans tend
to make decisions with smallset of concepts).

(3) Additivity enables FLMs to incorporate relevant concepts and exclude irrelevant ones, thereby
enhancing prediction accuracy (as shown in Table 2 and Table 3). For example, in document (a) of
Fig. 4, VALC identi es Concept 5as a highly related concept, distinguishing it from less related
concepts. In practice, this may help practitioners identify key concepts in model prediction and more
effectively intervene to improve model prediction accuracy (e.g., an expert may nd that a concept is
relevant and manually down-weight the concept to enhance the model's prediction).

(4) Mutual Information Maximization ensures a strong correlation between (1) VALC's generated
concept explanations and (2) the explained model's representation and predictions. In other words,
it ensures that VALC is explaining the target FLM, rather than generating concept explanations
irrelevant to the target FLM. For instance, in document (a) of Fig. 4, the inferred document-level
Concept Hdata analysis) effectively explains the FLM prediction, i.e., label 3 (computer science),
by highlighting the intrinsic link between the data analysis concept and the class label computer
science. This connection is evidenced by the words in datasetdevelept Stop right box). The

mutual information between the inferr€@bncept Ydata analysis) and label 3 (computer science)

contributes to generating high-quality explanations.

~—

F More Conceptual Interpretation Results in Different Downstream Tasks

Dataset-Level Interpretations. As in the main paper, we leverage VALC as an interpreter on MRPC,
RTE, STS-B and QQP, respectively, samBi&; 4; 4 concepts (topics) for each dataset respectively,
and plot the word embeddings of the top words (closest to the cerjtér these concepts using PCA.

Fig. 6(left) shows the concepts from MRPC. We can observe Concept 20 is mostly peibioirtg,
including words such as “suspect’, “police’, and "house'. Concept 24 is mostly pblitids, including

words such as “capital', "Congress', and “Senate'. Concept 27 contains mastgssuch as "Margaret'

and "Mary'. Similarly, Fig. 6(right) shows the concepts from RTE. We can observe Concept 67 is related to
West Asiaand includes words such as "Quran' and "Pasha’. Concept 13 is reldfeddpeand includes
European countries/names such as "Prussia’ and "Salzburg'. Concept 91 is mosthestitnearend
includes words such as “physiology’ and “insulin'. Fig. 7 shows the concepts from STS-B. We can observe
Concept 63 is mostly abolibusehold and daily lifencluding words such as “trash’, ~ owers', "airs’,

and “garden'. Concept 60 is mostly aboanls including words such as “stations', ‘rope’, "parachute’,
and "hose'. Concept 84 is mostly abaational securityincluding words such as “guerilla’, "NSA,
“espionage’, and ‘raided’. Concept 55 contains mostlyntries and citiesuch as “Kiev', "Moscow',




Figure 6: Visualization of VALC's learned topics of contextual word embeddihgft: MRPC's dataset-level inter-
pretation with two example documents. Concept 83 is relatively far from the other three concepts in the embedding
space; therefore we omit it on the left panel for better readabitityht: RTE's dataset-level interpretation with

three example documents.

Figure 7: Visualization of VALC's learned topics of contextual word embeddings. We show STS-B's dataset-level
interpretation with six example documents. The prediction of VALC is between the rarfigesdf

“Algeria’, and “Ukrainian'. Similarly, Fig. 8 shows the concepts from QQP. We can observe that Concept
12 is mostly abounegative attitudeincluding words such as “boring', “criticism', and 'blame’. Concept

73 is mostly abouPsychologyincluding words such as “adrenaline’, "haunting', and 'paranoia’. Concept
34 is mostly abouprevention and conservativascluding words such as “destroys', ‘unacceptable', and
‘prohibits’. Concept 64 is mostly aboustrategiesincluding words such as ‘rumours', “boycott', and
'deportation'.

Document-Level Interpretations. For document-level conceptual interpretations, we sample two
example documents from MRPC (Fig. 6(left)), three from RTE (Fig. 6(right)), six from STS-B (Fig. 7)
and eight from QQP (Fig. 8), respectively, where each document contains a pair of sentences. The MRPC
task is to predict whether one sentence paraphrases the other. For example, in the rst document of MRPC,
we can see that our VALC correctly interprets the model prediction “True' with Concept 24 (politics). The
RTE task is to predict whether one sentence entail the other. For example, in the second document of
RTE, VALC correctly interprets the model prediction “True' with Concept 13 (countries). The STS-B task
is to predict the semantic similarity between two sentences with the score rajiygJoFor example,




Figure 8: Visualization of VALC's learned topics of contextual word embeddings. We show QQP's dataset-level
interpretation with eight example documents.
Table 5: Example concepts on RTE dataset learned by VALC.

Concepts | Top Words

bio-chem cigarette biological = ozone cardiovascular chemist liver chemical  toxin
citizenship indies  bolivian ji surrey jamaican  dutch latino  caribbean
names mozart spielberg  einstein bush kurt liszt hilton lynn
conspiracy secretly corrupt disperse infected ill hidden illegally  sniper
administration | reagan  interior ambassador prosecutor diplomat legislative spokesman embassy
crime fraud laundering  sheriff prosecutor corruption  fool robber greed

in Document (a) of Fig. 7, we can see that VALC correctly interpret the model's predicted similarity
score 0:118 (which is relatively low,) with Concept 63 (household and daily life) and Concept 60 (tools).
Similarly, in Document (f) of Fig. 7, we can see that VALC correctly interpret the model's predicted
similarity score 4:672 (which is relatively high) with Concept 84 (national security). The QQP task

is to predict whether the two questions are paraphrase of each other. For example, in Document (b) of
Fig. 8, we can see that VALC correctly interprets the model's predicted label “False' with Concept 73
(Psychology). Similarly, in Document (e) of Fig. 8, we can see that VALC correctly interprets the model's
predicted label "True' with Concept 64 (strategies).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that VALC
interpret the FLM's prediction on MRPC's rst document (Fig. 6(left)) using words such as “senate' and
“bitty' that are related to politics. Note that the word "bitty' is commonly used (with little’) by politicians
to refer to the small size of tax relief/cut plans. Similarly, for RTE's rst document (Fig. 6(right)), VALC
correctly identi es Concept 67 (West Asia) and interprets the model prediction "False' by distinguishing
between keywords such as "Jihad' and "Al Qaeda'. likewise, we can observe that VALC interprets FLM's
prediction on Document (c) of Fig. 7 using words such as “cat', ~ oor', and “garlic' that are related to
household and daily life. Also, VALC interprets FLM's prediction on Document (e) of Fig. 7 using words
such as “soldier' and “border' that are related to national security. Similarly, for QQP's Document (d)
(Fig. 8), VALC correctly interprets the model prediction "True' by identifying keywords such as “sabotage'
and “oppose' with similar meanings in the topic of strategies. For QQP's Document (g), (Fig. 8), VALC
interprets the words in the both sentences with the same semantics, such as "conservative' that is related to
prevention and conservatives (note that in politics, “conservative' refers to parties that tend to prevent/block
new policies or legislation), and thereby predicting the correct label "True'.

Example Concepts.Following Blei et al. (2003), we show the learned concepts on the RTE dataset
in Table 5, which is complementary to aforementioned explanations. We select several different topics



Table 6: Additional results for the faithfulness (in terms of accuracy percentage (%)) of VALC and baselines on the
20 Newsgroups, M10, and BBC News datasets. We mark the best resultsoldtface

Methods 20 Newsgroups M10 BBC News Average on Three Datasets
SHAP/LIME 5.8 13.9 22.9 14.2

BERTopic 17.2 87.6 64.6 56.5

CETopic 79.2 96.4 100.0 91.9

VALC 89.8 99.5 100.0 96.4

Table 7: Comparison of Unedited and Uneditedn 20 Newsgroups, M10, and BBC News. We mark the best
results withbold face

Unedited Unedited+
20 Newsgroups 51.26 51.74
M10 69.74 70.76
BBC News 93.72 94.90

from Fig. 6. As in Sec. 5.4 of the main paper, we obtain top words from each concept via rst calculating
the average of the each word's corresponding contextual embeddings over the dataset, and then getting
the nearest words to each topic centeg)(in the embedding space. As we can see in Table 5, VALC can
capture various concepts with profound and accurate semantics. Therefore, although FLM embeddings
are contextual and continuous, our VALC can still nd conceptual patterns of words on the dataset-level.

G More Quantitative Results.

Faithfulness. Following (Lyu et al., 2024), we conducted additional experiments to evaluate the faithful-
ness metric. The faithfulness metric is implemented as the accuracy score of predictions using logistic
regression, with the inferred conceptual explanations as inputs. Table 6 shows the faithfulness of VALC
and baselines on the 20 Newsgroups, M10, and BBC News datasets. These results show that our VALC
signi cantly outperforms the baseline models, achieving the highest faithfulness accuracy scores in the 20
Newsgroups§9:8%), M10 (99:5%), and BBC News100.0%) datasets.

Note that the dataset size of 20 Newsgroups, M10, and BBC Neds§,389, 8;355 and2;225
respectively. BBC News contains signi cantly less data, making it easier to achieve a high faithfulness
score. This explains why both CETopic and our VALC obtain a faithfulness scdr@0dj%.

Baseline methods such as BERTopic and CETopic represent language concepts as discrete bags of
words, which lack exibility and accuracy. In contrast, VALC infers continuous concepts for datasets,
documents, and words with theoretical guarantees. Consequently, it provides optimal and faithful
conceptual explanations of high quality.

Document Classi cation with VALC Concepts. We conducted additional experiments to perform
document classi cation using the "CLS' token's embedding ar{thferred from VALC) as features. Ta-
ble 7 shows the results on three datasets. The results show that our VALC can learn meaningful concept
vector , which can improve model predictions of document labels.

H Theory on the Mutual Information Maximization Property

We provide the following proof of Theorem 4.1 of the main paper.
For convenience, let=(  {_;; K.;),and =( m;Zm).
We then introduce a helper joint distribution of the varialdgsand , s(em; ) = p(em)d( jem).
According to the de nition of ELBO of Section 3.4.1, in Eq. 8, we have

LHS = L(m: mi5 )= Epem)[Eqr)llogp(emj ; )+ Eq)llogal j)I : (19)



SinceEqy y[logq( j)] 0, we only need to prove that

Ep(en)[Eq( )[logp(emj ; M Is(em; ) H(em)= RHS: (20)
Then we have that

Ep(em)[Eqllog p(emj: )l Ep(em ) [Eqllog p(emj )l

g(emj ) p(em)p(emj )
p(em) qemj )
q(emij ) p(emij )

= Ep(em)[Eqllog 1

= Ep(em)[Eqllog o(en) 11+ Ep(em)[Eallog p(em I+ Ep(en, )[Eqllog a(em] )]]
=ls(em; ) H(em) EqIKL (a(emj )ip(em]j )]
Is(ém; ) H(em) 0= RHS; (21)

which concludes the proof of Theorem 4.1.

| Theoretical Analysis on Continuous Word Counts

Before going to the claims and proofs, rst we specify some basic problem settings and assumptions.
Suppose there aike + 1 topic groups, each of which is regarded to be sampled from a parameterized
multivariate Gaussian distribution. In specic, the + 1 'th distribution of topic has a much larger
covariance, and in the same time, closed to the center of embedding space. The prementioned properties
can be measured by a series of inequalities:

The approximate marginal log-likelihood of word embeddings, i.e., the third term of the ELBO as
mentioned in Eqgn. 2 of the main paper, is:

. Jm i
_ (train ) i1 Eq[log p(emj 1Zmj sz 0 Zmj )]

X 1 o 1=
= mewmfoSem 0T Cem W) 109l )T Wil (22)
m;j;k

The above equation is the training objective, yet for fair comparison of different training schemes, we
calculate the approximated likelihood with word codrfor all words.

X .
| (eval) — i Eqllog po(emj 1Zmj sz 5 zm )]
X

1 2. 1=
mcf SEm 0T em ) logl )T Wi (29)
mij;k

1.1 Gaussian Mixture Models

Suppose we have a ground truth GMM model with parameter@ R andf ,; oK., with K
different Gaussian distributions. In the datasetNe#ndN s denote the numbers of non-stop-words and
stop-words, respectively. Then the marginal log likelihood of a learned GMM model on a given data
samplee can be written as

X
peff ; g )= kN (& i 1) (24)
k=1
Assuming a dataset &f + Ng wordsf g; giN:I Ns and taking the associated weightsfor each word into
account, the log-likelihood of the dataset can be written as
NXNs X NXNs X

pleiff ki kOker: )= log  wi kN(ei; ;i Kk)+ log  wi kN(ei; ki k) (25)
i=1 i=1 k=1 i=N+1 k=1



Leveraging Jensen's inequality, we obtain a lower bound of the above quantity (denotindhes
collection of parameterfs ; gk-; and ):

X X NXNs X
Lewm( ;fwig)= wj log kN (ei; ki k)+ wi log kN (eis xi k)t C (26)
i=1 k=1 i=N+1 k=1

where C is a constant.
In the following theoretical analysis, we consider the following three different con gurations of the

weightsw; .
De nition 1.1 (Weight Con gurations). We de ne three different weight con gurations as follows:

« Identical Weightsw; = N+—1Ns,i 2f1;2:::;N + Ngg
( L
i2f1,2:::;Ng

« Ground-Truth Weightsw; = N

O i2fN+1;N +2;:::;N + Ngg
( 12[ 1 i] i2f1:2:::: Ng
« Attention-Based Weightsw; = N+Ne?N™ B
ZZ[O;W]; i2fN+1;N+2;:::;N + Ngg

De nition 1.2 (Advanced Weight Con gurations). We de ne three different weight con gurations as
follows:

« Identical Weightsw; = N+—1Ns,i 2f1;2;::::N + Nsg

L. S
+ Ground-Truth Weightsw; = N’ 1211525 Ng

(
_ _ LA i2f1;2;:00N
« Attention-Based Weightsw; 2 [yl 9

De nition 1.3 (Optimal Parameters). With De nition 1.1, the corresponding optimal parameters are
then de ned as follows:

| =argmax L( ;w ! Identica); (27)
c=argmaxL( ;w! GT); (28)
a=argmaxL( ;w! Attention); (29)

wherew ! Identicajw ! GT, andw ! Attentionindicates that “Identical Weights', "Ground-Truth
Weights', and “Attention-Based Weights' are used, respectively.

Lemma |.1. Suppose we have two series of functibhs; (x)g andf f 2 (x)g, with two non-negative
weighting parametersy; » satisfyingN ; + Ng 2 = 1. We de ne the nal objective functioh( ) as:

X Xs
f(x; 15 20= 1 fri(x)+ 2 f2:i (x): (30)
i=1 i=N+1

We assume two pairs of parametérg; ) and( $; 9), where

(31)
(32)

1

NO RO

2



De ning the optimal values of the objective function for different weighting parameters as

g =argmax f (x; 1 2); (33)
kO:arngaxf(x; %9 (34)
we then have that
1. a1l ..
f(k,W,O) f (&% N - 0): (35)

Proof. We prove this theorem by contradiction. Suppose that we have
1 1
f(&: =:0)<f (8% =:0):
(% 310) <f (85 50) (36)

According to Eq. 31, i.e.,1 2, and the equatioNl 1+ Ng » =1, we have

o 1 N9 ol N1 _
2— 1 - 1

1 N 1 N, 2: (37)
According to Eqg. 34, we have the following equality:
fa D 6% % Y (38)

Combined with the aforementioned assumption in Eg. 36, we have that

X Xs
Mo 2= 15 fu@®+ 25 fa(8) (39)
i=1 i=N+1
X Xs N
(12 fu@®+ 22 faB)F(N(13 T2 §  fu®) (40)
i=1 i=N+1 i=1
= ot G DN S A &0 (41)
<AES % PN Y LGB0 (42
X! Xs RS
(T2 ful)* 22 f@ENH(NC12 12 o fu®) (49
i=1 i=N+1 i=1
X Xs
=13 fu@®)+ 23 f2i (89 (44)
i=1 i=N+1
= %8S 1 2) (45)

which contradicts the de nition oR in Eq. 33 (i.e.® maximizesf (x; 1; 2)), completing the proof. [J

Lemma |.2. Suppose we have two series of functlbr@ (x)g andff ;i g)g, with tV\g) series of non-

negative weighting parameters = [ 1|]| R 2.]|N N +1 Satisfying iN=1 i+ | N+l 20 =
1. We de ne the nal objective functioh( ) as
X Xs
f(x; 1, 2)= 1ifi(x) + 2i f 2 (X): (46)
i=1 i=N+1

We assume two pairs of parametérs; ) and( ¢; 9), where

L 95, 121125 Ng; (47)
2 (2);i; i2fN+1;N +2;::;Nsg: (48)



Defining the optimal values of the objective function for different weighting parameters as

X = arg m)?xf(x; 1, 2); (49)
K = arg m)z(zxf(x; %0 (50)
X :argmaxf(x;i;O): (51)

N

Under the following Assumptions (with 1 and O denoting vectors with all entries equal to 1 and 0,
respectively):

1. f(%,0; 2) fF(X50; 7).

2. F(x; ;0) F(X ;0),iffkx xk kxX xKk; 0; k kg =1.
we have that
o1 ALY

Proof. We start with proving the following equality by contradiction:
kx xk k&% xk: (53)
Specifically, if
kx x k>kx' xKk; (54)
leveraging the Assumption 1 and 2 above, we have that
(% 15 2)=F(% 1,0)+F(%0; 2) <Ff(Xs 1;0)+FK;0; 2)=F(X; 1; 2); (59

which contradicts Eq. 49. Therefore, Eq. 53 holds.
Combining Eq. 53 and Assumption 2 above, we have that

o1 0. 1
f(X; 0) f(x,N,

N 0); (56)

concluding the proof. O

Based on the definitions and lemmas above, we have the following theorems:

Theorem 1.3 (Advantage of A in the Simplified Case). With Definition 1.1 and Definition 1.3, com-
paring |, @, and pa by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(;w ¥ GT), we have that

LGMM( 1, W ] GT) LGMM( AsW 1 GT) I—GMM( G,y W 1 GT)Z (57)

Proof. First, by definition one can easily find that g achieves the largest L( ;w ¥ GT) among the
three:

max[lLacpmm( 1;w ¥ GT);LGMM( Aw ¥ GT)] maxLgmm( ;w ¥ GT):LGMM( c:w ! GT): (58)

AN .yN+Ns : . : PK . .
Next, we set fwjgiz, to 1 and fw;g;= % to 2, respectively; we rewrite log =, kN(€i; ; «)

to . (;f  k9L;) By Lemmal.l, we have that
I—GMM( AsW L GT) LGMM( G, W ¥ GT)Z (59)

Combining Eq. 58 and Eq. 59 concludes the proof. O



Theorem 1.3 shows that under mild assumptions, the attention-based weights can help produce better
estimates of  in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving interpretability of FLMs.

Theorem 1.4 (Advantage of A in the General Case). With Definition 1.2 and Definition 1.3, com-
paring |, G, and A by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
Lomm (;w ¥ GT), we have that

I—GMM( 1, W | GT) I—GMM( AW | GT) I—GMM( G, W | GT) (60)

Proof. First, by definition one can easily find that g achieves the largest L( ;w ¥ GT) among the
three:

max[Lowm( 1;w ¥ GT)ILGMM( Asw B GT)] max Lowm( ;w ¥ GT) =Lowm( ciw ¥ GT)Z (61)

Next, we inv%e Lemma 1.2 by (1) setting fWigg\':1 to 1 and fWig!\':T\I'\fl to 2, respectively, and (2)

rewriting log =, kN (€i; k) as Fri(x) fori2 f1;2;:::;Ngand fai(x) fori 2 fN + 1;N +
1;::7; N + Nsg, where X corresponds to > (G F kgfle). By Lemma 1.2, we then have that
I—GMM( As W | GT) LGMM( Gy W | GT)Z (62)

Note that because f1.j( ) and f2.j( ) are Gaussian, therefore Assumption 1 and 2 in Lemma 1.2 hold
naturally under mild regularity conditions.
Combining Eq. 61 and Eq. 62 concludes the proof. O

LI.2 VALC as Interpreters

As mentioned in Eq. B , the ELBO of the marginal likelihood (denoting as  the collection of parameters
; and T kgf((:l) is as follows:

L0 .
Lvac( ;s fwig) = j=1 Eqllog p(emjizmj: Zmj’  Zmj )]
>< < 1 —2. 1=
= Wmj mikf SCmi 10T temi W logl@ DR B -8 (63)
m;j k

Based on the definitions and lemmas above, we have the following theorems:

Theorem L5 (Advantage of A in the Simplified Case). With Definition 1.1 and Definition 1.3, com-
paring |, @, and pa by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(;w ¥ GT), we have that

Lvarc( ;W B GT)  Lyare( a;w ¥ GT)  Lyare( o;w ¥ GT): (64)

Proof. First, by definition one can easily find that ¢ achieves the largest L( ;w ¥ GT) among the
three:

max[Lyac( 1w ¥ GT)iLuac( aiw 8 G maxiuc( sw 1 GT) = Lyae( o:w # GT): (65)

Nm Nm+Nm:s . . .
Next, we set [mfwmjgj:1 to 1 and [mf\ijgj:,\,m 41 to 2, respectively; we rewrite
o omiif 3emi DT itemi ) logl(2 )*P itPgaas Fuj(x) for j 2 [mF1;25::1 Nmg

(R kgl'(<=l).ByLemmaI.l,wehavethat
Lvarc( a;w ¥ GT) Lyac( o;w ¥ GT): (66)

Combining Eq. 65 and Eq. 66 concludes the proof. O

Theorem 1.5 shows that under mild assumptions, the attention-based weights can help produce better
estimates of  in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving and interpretability of FLMs.



Theorem 1.6 (Advantage of A in the General Case). With Definition 1.2 and Definition 1.3, com-
paring |, @, and pa by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
Lvarc(;w ¥ GT), we have that

Lvacc( 1;Ww ¥ GT)  Lyare( a;w ¥ GT)  Lwre( g;w ¥ GT): (67)

Proof. First, by definition one can easily find that g achieves the largest L( ;w ¥ GT) among the
three:

max[Lyac( j;w ¥ GT);LVALC( Aw B GT)] max Lyarc( ;w ¥ GT) = Lvarc( g:w ¥ GT)Z (68)

Next, we invoke Lemma 1.2 by (1) setting [ mTwmj g}-\lzml to 1 and [mTwm;j g}\l:NerNHS to », respectively,

and (2) rewriting  ; mjif 3(emj DT Hemj i) log[(2 )%2j ij*?]g as F1;j(x) for j 2

[mf1; 2,005 Nmg and T2.5(X) for j 2 [mTNm + 1;Nm + 1;: 1, Nm 4+ Nm;s0, where X corresponds to
> (5 o fF kg|}<<=1)- By Lemma 1.2, we then have that

Lvarc( a;w ¥ GT)  Lvac( o;w ¥ GT): (69)

Note that because f1:j ( ) and f2;j( ) are very close to Gaussian, therefore Assumption 1 and 2 in Lemma 1.2
hold naturally under mild regularity conditions.
Combining Eq. 68 and Eq. 69 concludes the proof. O
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