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Abstract

Foundation Language Models (FLMs) such as
BERT and its variants have achieved remark-
able success in natural language processing.
To date, the interpretability of FLMs has pri-
marily relied on the attention weights in their
self-attention layers. However, these atten-
tion weights only provide word-level interpreta-
tions, failing to capture higher-level structures,
and are therefore lacking in readability and
intuitiveness. To address this challenge, we
first provide a formal definition of conceptual
interpretation and then propose a variational
Bayesian framework, dubbed VAriational Lan-
guage Concept (VALC), to go beyond word-
level interpretations and provide concept-level
interpretations. Our theoretical analysis shows
that our VALC finds the optimal language con-
cepts to interpret FLM predictions. Empirical
results on several real-world datasets show that
our method can successfully provide concep-
tual interpretation for FLMs.

1 Introduction

Foundation language models (FLMs) such as
BERT (Devlin et al., 2018) and its variants (Lan
et al., 2019; Liu et al., 2019; He et al., 2021; Portes
et al., 2023) have achieved remarkable success in
natural language processing. These FLMs are usu-
ally large attention-based neural networks that fol-
low a pretrain-finetune paradigm, where models are
first pretrained on large datasets and then finetuned
for a specific task. As with any machine learn-
ing models, interpretability in FLMs has always
been a desideratum, especially in decision-critical
applications (e.g., healthcare).

To date, FLMs’ interpretability has primarily
relied on the attention weights in self-attention lay-
ers. However, these attention weights only provide
raw word-level importance scores as interpretations.
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the Senate’s little bitty tax relief 
plan.
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little bitty tax relief plan.
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Figure 1: Visualization of VALC’s learned concepts.
A document consists of two sentences. The task is
to decide whether ‘Sentence 1’ paraphrases ‘Sentence
2’. Left: Dataset-level concepts for MRPC dataset
with 3 concepts and their nearest word embeddings.
Middle: Document-level concept strength, showing
that this document is mostly related to Concept 20 and
Concept 24. Right: Word-level concepts, where the
FLM correctly predicts the label to be ‘True’, and VALC
interprets that this is because the both sentences consist
of words with Concept 24, i.e., Politics.

Such low-level interpretations fail to capture higher-
level semantic structures, and hence lack readabil-
ity, intuitiveness and stability. For example, low-
level interpretations often fail to capture influence
of similar words to predictions, leading to unstable
or even unreasonable explanations (see Sec. 5.4
for details). In this paper, we aim to go beyond
word-level attention and interpret FLM predictions
at the concept level; see an example in Fig. 1. Such
higher-level semantic interpretations are comple-
mentary to word-level importance scores and often
more readable and intuitive.

We start by developing a comprehensive and for-
mal definition of conceptual interpretation with
four desirable properties: (1) multi-level structure,
(2) normalization, (3) additivity, and (4) mutual
information maximization. With this definition,
we then propose a variational Bayesian framework,
dubbed VAriational Language Concept (VALC), to
provide dataset-level, document-level, and word-
level (the first property) conceptual interpretation
for FLM predictions. Our theoretical analysis



shows that maximizing our VALC’s evidence lower
bound is equivalent to inferring the optimal con-
ceptual interpretation with Properties (1-3) while
maximizing the mutual information between the in-
ferred concepts and the observed embeddings from
FLMs, i.e., Property (4).

Drawing inspiration from hierarchical Bayesian
deep learning (Wang and Yeung, 2016, 2020; Wang
et al., 2016), the core of our idea is to treat a FLM’s
contextual word embeddings (and their correspond-
ing attention weights) as observed variables and
build a probabilistic generative model to automati-
cally infer the higher-level semantic structures (e.g.,
concepts or topics) from these embeddings and at-
tention weights, thereby interpreting the FLM’s
predictions at the concept level. Our VALC is com-
patible with any attention-based FLMs and can
work as an conceptual interpreter, which explains
the FLM predictions at multiple levels with theoret-
ical guarantees. Our contributions are as follows:

• We identify the problem of multi-level interpre-
tations for FLM predictions, develop a formal
definition of conceptual interpretation, and
propose VALC as the first general method to
infer such conceptual interpretation.

• Theoretical analysis shows that learning VALC
is equivalent to inferring the optimal concep-
tual interpretation according to our definition.

• Quantitative and qualitative analysis on real-
world datasets show that VALC can infer mean-
ingful language concepts to effectively and in-
tuitively interpret FLM predictions.

2 Related Work

Foundation Language Models. Foundation lan-
guage models are large attention-based neural net-
works that follow a pretrain-finetune paradigm.
Usually they are first pretrained on large datasets
in a self-supervised manner and then finetuned for
a specific downstream task. BERT (Devlin et al.,
2018) is a pioneering FLM that has shown impres-
sive performance across multiple downstream tasks.
Following BERT, there have been variants (He
et al., 2021; Clark et al., 2020; Yang et al., 2019;
Liu et al., 2019; Lewis et al., 2019) that design dif-
ferent self-supervised learning objectives or train-
ing schemes to achieve better performance. While
FLMs offer attention weights for interpreting pre-
dictions at the word level, these interpretations lack

readability and intuitiveness because they fail to
capture higher-level semantic structures.

Interpretation Methods for FLMs. Existing
conceptual interpretation methods for FLMs typi-
cally rely on topic models (Blei et al., 2003; Blei
and Lafferty, 2006; Blei, 2012; Wang et al., 2012;
Chang and Blei, 2009) and prototypical part net-
works (Chen et al., 2019). There has been re-
cent work that employs deep neural networks to
learn topic models more efficiently (Card et al.,
2017; Xing et al., 2017; Peinelt et al., 2020), using
techniques such as amortized variational inference.
There is also work that improves upon traditional
topic models by either leveraging word similarity as
a regularizer for topic-word distributions (Das et al.,
2015; Batmanghelich et al., 2016) or including
word embeddings into the generative process (Hu
et al., 2012; Dieng et al., 2020; Bunk and Kres-
tel, 2018; Duan et al., 2021). There is also work
that builds topic models upon embeddings from
FLMs (Grootendorst, 2020; Zhang et al., 2022;
Wang et al., 2022; Zhao et al., 2020; Meng et al.,
2022). However, these methods often rely on a
pipeline involving dimensionality reduction and ba-
sic clustering, which is not end-to-end, leading to
potential information loss between FLM embed-
dings and clustering outcomes. This can result in
unfaithful interpretations for the underlying FLM.
Additionally, they typically generate interpretations
at a single level (e.g., document level), lacking a
multi-level conceptual structure.

Beyond topic models, attribution-based ap-
proaches such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) assign impor-
tance to input features to explain predictions. Con-
cept bottleneck models (CBMs) (Koh et al., 2020;
Yuksekgonul et al., 2023; Yang et al., 2023; Kim
et al., 2018; Schulz et al., 2020; Paranjape et al.,
2020; Schrouff et al., 2021) offer interpretations by
learning conceptual activation and then performing
classifications on these concepts, while inherent
models (Xie et al., 2023; Ren et al., 2023; Shi et al.,
2021) focus on model redesign/re-training for in-
terpretability. However, these approaches often re-
quire extra supervision or re-training, making them
unsuitable for our setting. In contrast, our method
is inherently multi-level and end-to-end, models
concepts across dataset, document, and word lev-
els, and produces faithful post-hoc interpretations
for any models based on FLMs with theoretical
guarantees.



Figure 2: Overview of VALC framework.

3 Methods

In this section, we formalize the de�nition ofcon-
ceptual interpretation, and describe our proposed
VALC for conceptual interpretation of FLMs.

3.1 Problem Setting and Notation

We consider a corpus ofM documents, where the
m'th document containsJm words, and a FLM
f (Dm ), which takes as input the documentm (de-
noted asDm ) with Jm words and outputs (1) a
CLS embeddingcm 2 Rd, (2) Jm contextual word
embeddingsem , [emj ]Jm

j =1 , and (3) the attention

weightsa(h)
m , [a(h)

mj ]Jm
j =1 between each word and

the last-layer CLS token, whereh denotes theh'th
attention head. We denote the average attention
weight over H heads asamj = 1

H

P H
h=1 a(h)

mj and

correspondinglyam , [amj ]Jm
j =1 (see the FLM

at the bottom of Fig. 2). In FLMs, these last-
layer CLS embeddings are used as document-level
representations for downstream tasks (e.g., docu-
ment classi�cation). Furthermore, our VALC as-
sumesK concepts (topics) for the corpus. For
documentm, our VALC interpreter tries to in-
fer a concept distribution vector� m 2 RK (also
known as the topic proportion in topic models)
for the whole document and a concept distribu-
tion vector � mj = [ � mjk ]Kk=1 2 RK for word
j in documentm. In our continuous embedding
space, thek'th concept is represented by a Gaus-
sian distribution,N (� k ; � k ), of contextual word
embeddings; we use shorthand
 k = ( � k ; � k ) for
brevity. The goal is to interpret FLMs' predictions
at the concept levelusing the inferred document-
level concept vector� m , word-level concept vec-
tor � mj , and the learned embedding distributions
fN (� k ; � k )gK

k=1 for each concept (see Sec. 5.4
for detailed descriptions and visualizations).

3.2 Formal De�nition of Language Concepts

Below we formally de�ne `conceptual inter-
pretation' for FLM predictions (see notations
in Sec. 3.1):

De�nition 3.1 (Conceptual Interpretation). As-
sumeK concepts and a datasetD containingM
documents, each withJm words (1 � m � M ).
Conceptual interpretation for a documentm con-
sists of K dataset-levelvariables f 
 kgK

k=1 , a
document-levelvariable� m , andJm word-level
variablesf � mj gJm

j =1 with the following properties:
(1) Multi-Level Structure. Conceptual interpreta-

tion has a three-level structure:
(a) Eachdataset-levelvariable
 k = ( � k ; � k )

describes thek'th concept; � k 2 Rd and
� k 2 Rd� d denote the mean and covariance
of thek'th concept in the embedding space
(i.e.,emj 2 Rd), respectively.

(b) Eachdocument-levelvariable� m 2 RK
� 0

describes documentm's relation to theK
concepts.

(c) Eachword-levelvariable� mj 2 RK
� 0 de-

scribes wordj 's relation to theK concepts.
(2) Normalization. The document- and word-

level interpretations,� m and� mj , are normal-
ized:

(a)
P K

k=1 � mk = 1 for documentm.
(b)

P K
k=1 � mjk = 1 for word j in documentm.

(3) Additivity. We can add/subtract thek's con-
cept from the contextual embeddingsemj of
word j in documentm, i.e., emj  emj �
xk � k (xk is the editing weight of conceptk).

(4) Mutual Information Maximization. The con-
ceptual interpretation achieves maximum mu-
tual information between the observed em-
beddingsem in FLMs and the document-
level/word-level interpretation,� m and� mj .

In De�nition 3.1, Property (1) provides compre-
hensive three-level conceptual interpretation for
FLM predictions, Property (2) ensures proper nor-
malization in concept assignment at the document
and word levels, Property (3) enables better concept
editing (more details in Sec. 5.3) to modify FLM
predictions, and Property (4) ensures minimal in-
formation loss when interpreting FLM predictions.

3.3 VAriational Language Concepts (VALC)

Method Overview. Drawing inspiration from hier-
archical Bayesian deep learning (Wang and Yeung,
2016, 2020; Wang et al., 2016; Mao et al., 2022;
Yan and Wang, 2023; Xu et al., 2023; Wang et al.,



Figure 3: Graphical model of our VALC. Thestriped
circle representscontinuousword counts.

2024), we propose our model, VAriational Lan-
guage Concepts (VALC), to infer the optimal con-
ceptual interpretation described in De�nition 3.1.
Different fromstaticword embeddings (Mikolov
et al., 2013) and topic models, FLMs producecon-
textualword embeddings with continuous-value en-
tries[emj ]Jm

j =1 and more importantly, associate each
word embedding with a continuous-value attention
weight[amj ]Jm

j =1 ; therefore this brings unique chal-
lenges.

To effectively discover latent concept structures
learned by FLMs at the dataset level and interpret
FLM predictions at the data-instance level, our
VALC treats both the contextual word embeddings
and their associated attention weights as observa-
tions to learn a probabilistic generative model of
these observations, as shown in Fig. 2. The key idea
is to use the attention weights from FLMs to com-
pute a virtual continuous count for each word, and
model the contextual word embedding distributions
with Gaussian mixtures. The generative process of
VALC is as follows (we mark key connection to
FLMs in blue and show the corresponding graphi-
cal model in Fig. 3):

For each documentm; 1 � m � M ,
1. Draw the document-level concept distribution

vector� m � Dirichlet(� ).
2. For each wordj (1 � j � Jm ),
(a) Draw the word-level concept indexzmj �

Categorical(� m ).
(b) With a continuous word countwmj 2 R

from the FLM's attention weights, Draw
the contextual word embedding of the FLM
from the corresponding Gaussian component
emj � N (� zmj

; � zmj ).
Given the generative process above, discov-

ery of latent concept structures in FLMs at the
dataset level boils down to learning the parameters
f � k ; � kgK

k=1 for theK concepts. Intuitively the
global parametersf � k ; � kgK

k=1 are shared across

different documents, and they de�ne a mixture of
K Gaussian distributions. Each Gaussian distribu-
tion describes a `cluster' of words and their contex-
tual word embeddings.

Similarly, interpretations of FLM predictions at
the data-instance level is equivalent to inferring the
latent variables, i.e., document-level concept distri-
bution vectors� m and word-level concept indices
zmj . Below we highlight several important aspects
of our VALC designs.

Attention Weights as Continuous Word
Counts. Different from typical topic mod-
els (Blei et al., 2003; Blei, 2012) and word em-
beddings (Mikolov et al., 2013) that can only han-
dle discreteword counts, our VALC can handle
continuous(virtual) word counts; this better aligns
with continuous attention weights in FLMs. Specif-
ically, we denote aswmj 2 R� 0 the (non-negative
real-valued)continuous word countfor the j 'th
word in documentm. We explore three schemes of
computingwmj :

• Identical Weights: Use identical weights for
different words, i.e.,wmj = 1 ; 8m; j . This is
equivalent to typical discrete word counts.

• Attention-Based Weights with Fixed Length:
Use wmj = J 0amj , whereJ 0 is a �xed se-
quence length shared across all documents.

• Attention-Based Weights with Variable
Length: Usewmj = Jm amj =P J m

i =1 ami , where
Jm is true sequence length without padding.
Note that in practice,

P Jm
i =1 ami 6= 1 due to

padding tokens in FLMs.

Contextual Continuous Word Representa-
tions. Note that different from topic models (Blei
et al., 2003) and typical word embeddings (Mikolov
et al., 2013; Dieng et al., 2020) where word repre-
sentations arestatic, word representations in FLMs
arecontextual; speci�cally, the same word can have
different embeddings in different documents (con-
texts). For example, the word `soft' can appear as
the j 1'th word in documentm1 and as thej 2'th
word in documentm2, and therefore have two dif-
ferent embeddings (i.e.,em1 j 1 6= em2 j 2 ).

Correspondingly, in our VALC, we do not con-
strain the same word to have a static embedding;
instead we assume that a word embedding is drawn
from a Gaussian distribution corresponding to its
latent topic. Note that word representations in our
VALC is continuous, which is different from typi-
cal topic models (Blei et al., 2003) based on (dis-
crete) bag-of-words representations.



3.4 Objective Function

Below we discuss the inference and learning pro-
cedure for VALC. We start by introducing thein-
ferenceof document-level and word-level concepts
(i.e.,zmj and� m ) given the global concept param-
eters (i.e.,f (� k ; � k )gK

k=1 ), and then introduce the
learningof these global concept parameters.

3.4.1 Inference

Inferring Document-Level and Word-Level Con-
cepts. We formulate the problem of interpret-
ing FLM predictions at the concept level as in-
ferring document-level and word-level concepts.
Speci�cally, given global concept parameters
f (� k ; � k )gK

k=1 , thecontextualword embeddings
em , [emj ]Jm

j =1 , and the associated attention

weightsam , [amj ]Jm
j =1 , a FLM produces for each

documentm, our VALC infers the posterior distri-
bution of the document-level concept vector� m ,
i.e.,p(� m jem ; am ; f (� k ; � k )gK

k=1 ), and the poste-
rior distribution of the word-level concept index
zmj , i.e.,p(zmj jem ; am ; f (� k ; � k )gK

k=1 ).
Variational Distributions. These posterior dis-

tributions are intractable; we therefore resort to
variational inference (Jordan et al., 1998; Blei et al.,
2003) and use variational distributionsq(� m j m )
andq(zmj j� mj ) to approximate them. Here m 2
RK and� mj , [� mjk ]Kk=1 2 RK are variational
parameters to be estimated during inference. This
leads to the following joint variational distribution:

q(� m ; f zmj gJm
j =1 j m ; f � mj gJm

j =1 )

= q(� m j m ) �
Y Jm

j =1
q(zmj j� mj ): (1)

Evidence Lower Bound.For each documentm,
�nding the optimal variational distributions is then
equivalent to maximizing the following evidence
lower bound (ELBO):

L ( m ; f � mj gJ m
j =1 ; � ; f (� k ; � k )gK

k=1 )

= Eq[log p(� m j� )] +
X J m

j =1
Eq[log p(zmj j� m )]

+
X J m

j =1
Eq[log p(emj jzmj ; � zmj

; � zmj )]

� Eq[log q(� m )] �
X J m

j =1
Eq[log q(zmj )]; (2)

where the expectation is taken over the joint varia-
tional distribution in Eq. 1.

Likelihood with Continuous Word Counts.
One key difference between VALC and typical
topic models (Blei et al., 2003; Blei, 2012) is the

virtual continuous (real-valued) word counts (dis-
cussed in Sec. 3.3). Speci�cally, we de�ne the
likelihood in the third term of Eq. 2 as:

p(emj j zmj ; � z mj
; � z mj ) = [ N (emj ; � mj ; � mj )] w mj : (3)

Note that Eq. 3 is the likelihood ofwmj (virtual)
words, wherewmj is a real value derived from
the FLM's attention weights (details in Sec. 3.3).
Therefore, in the third item of Eq. 2, we have:

Eq [log p(emj j zmj ; � z mj
; � z mj )]

=
X

k
� mjk wmj log N (emj j � k ; � k )

=
X

k
� mjk wmj f�

1

2
(emj � � k )T � � 1

k (emj � � k )

� log[(2 � )d= 2 j � k j1= 2 ]g: (4)

Update Rules.Taking the derivative of the ELBO
in Eq. 2 w.r.t. � mjk (see Appendix A for details)
and setting it to0 yields the update rule for� mjk :

� mjk /
wmj

j � k j1= 2
exp[	(  mk ) � 	(

X

k 0
 mk 0)

�
1

2
(emj � � k )T � � 1

k (emj � � k )] ; (5)

with the normalization constraint
P K

k=1 � mjk = 1 .

 mk = � k +
X Jm

j =1
� mjk wmj ; (6)

where� , [� k ]Kk=1 is the hyperparameter for the
Dirichlet prior distribution of� m . In summary, the
inference algorithm will alternate between updating
� mjk for all (m; j; k ) tuples and updating mk for
all (m; k) tuples.

3.4.2 Learning

Learning Dataset-Level Concept Parameters.
The inference algorithm in Sec. 3.4.1 assumes
availability of the dataset-level (global) concept
parametersf (� k ; � k )gK

k=1 . To learn such these
parameters, one needs to iterate between (1) infer-
ring document-level variational parameters m as
well as word-level variational parameters� mj in
Sec. 3.4.1 and (2) learning dataset-level concept
parametersf (� k ; � k )gK

k=1 .
Update Rules.Similar to Sec. 3.4.1, we expand

the ELBO in Eq. 2 (see Appendix A for details) and
set its derivative w.r.t.� k and� k to 0, yielding the
update rule for learning� k and� k :

� k =

P
m;j � mjk wmj emj
P

m;j � mjk wmj
;

� k =

P
m;j � mjk wmj (emj � � k )( emj � � k )T

P
m;j � mjk wmj

: (7)



Algorithm 1: Algorithm for VALC

Input: Initialized f  m gM
m=1 , f � m gM

m=1 ,
andf 
 kgK

k=1 , documentsfD m gM
m=1 ,

number of epochs T.
for t = 1 : T do

for m = 1 : M do
Update� m and m using Eq. 5 and

Eq. 6, respectively.
Updatef 
 kgK

k=1 using Eq. 7.

Effect of Attention Weights. From Eq. 7, we
can observe that the attention weight of thej 'th
word in documentm, i.e.,amj , affects the virtual
continuous word countwmj (see Sec. 3.3), thereby
affecting the update of the dataset-level concept
center� k and covariance� k . Speci�cally, if we
use attention-based weights with �xed length or
variable length in Sec. 3.3, the continuous word
count wmj will be proportional to the attention
weightamj . Therefore, when updating the concept
center� k as a weighted average of different word
embeddingsemj , VALC naturally places more fo-
cus on words with higher attention weightsamj

from FLMs, thereby making the interpretations
sharper (see Sec. 5.4 for detailed results and Ap-
pendix I for theoretical analysis).

4 Theoretical Analysis

In this section, we provide theoretical guarantees
of VALC on the four properties in De�nition 3.1.

Multi-Level Structure. As shown in Alg. 1,
VALC (1) learns thedataset-levelinterpretation
f 
 kgK

k=1 describing theK concepts, (2) infers the
distribution ofdocument-levelinterpretation� m

for documentm, i.e., q(� m j m ) (parameterized
by  m ), and (3) infers the posterior distribution of
word-levelconcept index, i.e.,q(zmj j� mj ), param-
eterized by� mj . Such three-level interpretations
correspond to Property (1) in De�nition 3.1.

Normalization. The learned variational distribu-
tion q(� m j m ) (described in Eq. 1) is a Dirichlet
distribution; therefore we have

P K
k=1 � mk = 1 .

The update of� mj (Eq. 5) is naturally constrained
by

P K
k=1 � mjk = 1 since� mj parameterizes a

Categorical distribution (overzmj ).
Additivity . VALC is able to performConcept

Editing, i.e, add/subtract the learned concept acti-
vation� k from FLMs via the following Quadratic
Programming (QP) problem (x = [ xk ]Kk=1 ):

Algorithm 2: Algorithm for VALC Con-
cept Editing
Input: FLM f (�), classi�erg(�),
classi�cation lossL , documentDm with
Jm words, labelsy , constant factor! .

for j = 1 : Jm do emj = f (Dmj )
x � = QP(emj ; f � kgK

k=1 )
k� = arg min L(g(emj � ! � x �

k � k ); ym )
emj  emj � ! � x �

k � � k �

minx 2 RK k
X K

k=1
xk � k � em k2;

subject to x � 0 and
X K

k=1
xk = 1 :

Given learned conceptsf (� k ; � k )gK
k=1 , VALC

obtains this QP's optimal solutionx � 2 RK and
add/subtract any conceptk from arbitrary FLM
embeddingem by: em  em � x �

k � k : Alg. 2
summarizes thisconcept editingprocess; one can
also replaceemj with the CLS embeddingcm for
document-level editing (details in Appendix D).

Mutual Information Maximization. Theo-
rem 4.1 below shows that our inferred document-
level and word-level interpretation,� m and
f � mj gJm

j =1 , satisfy Property (4), Mutual Informa-
tion Maximization, in De�nition 3.1.

Theorem 4.1 (Mutual Information
Maximization). In Eq. 2, the ELBO
L( m ; f � mj gJm

j =1 ; � ; f (� k ; � k )gK
k=1 ) is up-

per bounded by the mutual information between
contextual embeddingsem and multi-level
interpretation � m ; f � mj gJm

j =1 in De�nition 3.1.
Formally, with approximate posteriorsq(� m j m )
andq(zmj j� mj ), we have

L ( m ; f � mj gJm
j =1 ; � ; f (� k ; � k )gK

k=1 )

� I (em ; � m ; f zmj gJm
j =1 ) � H (em ); (8)

where the entropy termH (em ) is a constant.

From Theorem 4.1 we can see that maximiz-
ing the ELBO in Eq. 2 is equivalent to maximiz-
ing the mutual information between our document-
level/word-level concepts and the observed contex-
tual embeddings in FLMs (proof in Appendix H).

In summary, VALC enjoys all four properties
in De�nition 3.1 and therefore generates the opti-
mal conceptual interpretation for FLMs. In con-
trast, state-of-the-art methods only satisfy a small
part of them (Table 1 and Sec. 5.2). In Appendix I,
we provide theoretical guarantees that (1) under



mild assumptions our VALC can learn better con-
ceptual interpretations for FLMs for in noisy data
and (2) attention-based schemes is superior to the
identical scheme (described in Sec. 3.3).

5 Experiments

5.1 Experiment Setup

Datasets.We use three datasets in our experiments,
namely 20 Newsgroups, M10 (Lim and Buntine,
2015), and BBC News (Greene and Cunningham,
2006). For preprocessing details, see Appendix C.

Baselines. We compare our method with the
following state-of-the-art baselines:

• SHAP and LIME (Lundberg and Lee, 2017;
Ribeiro et al., 2016) are interpretation meth-
ods that attribute importance scores to input
features. In this paper, we use embeddings of
`CLS' token as input to SHAP/LIME.

• BERTopic (Grootendorst, 2020) is a
clustering-based model that uses HDB-
SCAN (McInnes and Healy, 2017) to cluster
sentence embeddings from BERT, performs
Uniform Manifold Approximation Projection
(UMAP) (McInnes et al., 2018), and then
uses class-based TF-IDF (c-TF-IDF) to obtain
words for each cluster.

• CETopic (Zhang et al., 2022) is a clustering-
based model that �rst uses UMAP to per-
form dimensionality reduction on BERT sen-
tence embeddings, performs K-Means clus-
tering (Lloyd, 1982), and then uses weighted
word selection for each cluster.

Evaluation Metric. Inspired by Koh et al.
(2020), we perform concept editing experiments
to evaluate conceptual interpretation for FLMs;
higheraccuracy gainafter editing indicates better
interpretation performance. We leverage BERT-
base-uncased (Devlin et al., 2018) as the contextual
embedding model, and use accuracy on the test set
as our metric. For details, see Appendix D.

We can perform concept editing on either input
tokens or contextual embeddings of FLMs. Specif-
ically, we can performhard concept editing for
conceptk by directly removing tokens that belong
conceptk (applicable for hard clustering methods
such as our baselines); we could also performsoft
concept editing for conceptk by removing concept
subspace vectors from contextual embeddingsem

(applicable for VALC using Alg. 2).

Table 1: Comparing methods on the properties in De�-
nition 3.1 (MIM: Mutual Information Maximization).

Model Multi-Level Normalization Additivity MIM

SHAP/LIME No No Partial No
BERTopic No Hard Partial No
CETopic No Hard Partial No
VALC Yes Soft Full Yes

5.2 Comparison on Four Properties
in De�nition 3.1

In Sec. 4 we show that VALC satis�es the four
properties of conceptual interpretation in De�ni-
tion 3.1. In contrast, baseline models do not neces-
sarily learn concepts that meet these requirements.
Table 1 summarizes the comparison between VALC
and the baselines. We can see that VALC is superior
to baselines in terms of the following four aspects:
(1) Multi-Level Structure. Baselines either apply

clustering algorithms directly on the document-
level embeddings from FLMs or assign impor-
tance scores to input features, and thus can
only provide single-level interpretation, ne-
cessitating complex post-processing to gener-
ate dataset-level concepts. In contrast, VALC
adopts an integrated approach, learning con-
cepts at the dataset, document, and word level
in a joint, end-to-end manner.

(2) Normalization. BERTopic and CETopic
assign each word to exactly one concept
and therefore satis�eshard-normalization.
SHAP/LIME produce importance scores that
are not normalized. In contrast, VALC learns
fractional concept interpretations m and
� mj and therefore satis�essoft-normalization,
which is more �exible and intuitive.

(3) Additivity. Baselines perform addition or
subtraction of concepts only at a single level
(word/document), while our additivity and con-
cept editing (Alg. 2) work for both levels.

(4) Mutual Information Maximization. Base-
lines either use a multi-step pipeline or produce
importance scores; they are therefore prone to
lose information between FLM embeddings
and �nal clustering/scoring results. In contrast,
VALC is theoretically guaranteed to maximally
preserve information (Theorem 4.1).

5.3 Concept Editing Results

Accuracy Gain. We perform greedy concept edit-
ing (Koh et al., 2020) for BERTopic, CETopic, and
our VALC to evaluate the quality of their learned



Table 2:Accuracy gain on 20 Newsgroups (20NG),
M10, and BBC News (BBC) (%).We mark the best re-
sults withbold faceand the second best withunderline.

Dataset Unedited SHAP BERTopic CETopic VALC Finetune
/LIME (Oracle)

20NG Acc. 51.26 61.74 60.76 61.93 62.54 64.38
Gain - 10.48 9.50 10.67 11.28 13.12

M10 Acc. 69.74 75.60 76.79 79.18 80.74 82.54
Gain - 5.86 7.05 9.44 11.00 12.80

BBC Acc. 93.72 95.96 95.52 96.86 96.41 97.76
Gain - 2.24 1.80 3.14 2.69 4.04

Table 3:VALC Editing Accuracy (%). We mark the
best results withbold face, second best withunderline.

Dataset Unedited Random Unweighted Weighted
Finetune
(Oracle)

20 Newsgroups 51.26 51.13 54.63 62.54 64.38
M10 69.74 69.76 73.56 80.74 82.54
BBC News 93.72 93.72 95.52 96.41 97.76

concepts. Higher accuracy gain after pruning indi-
cates better performance.

Table 2 show the results for different methods
in three real-world datasets, where `Finetune (Or-
acle)' refers to �netuning both the backbone and
the classi�er of BERT. VALC's concept editing can
improve the accuracy upon the unedited model by
more than11%in 20 Newsgroups and M10, almost
on par with `Finetune (Oracle)'. Compared with
the baselines, VALC achieves the most accuracy
gain in 20 Newsgroups and M10 and the second
most accuracy gain in BBC News, demonstrating
the effectiveness of VALC's four properties in Def-
inition 3.1. Note that SHAP and LIME both inter-
pret the CLS token's embedding and therefore has
identical accuracy gain (details in Appendix D).

Ablation Study. Thanks to its full additivity
(De�nition 3.1), VALC is capable of different con-
cept editing schemes, including `Random', `Un-
weighted', and `Weighted'. Speci�cally,weighted
pruning uses the concept editing algorithm in Alg. 2
with the optimal hyperparameter! ; unweighted
pruning runs Alg. 2 with! = 1 ; randompruning
�rst randomly picks a conceptk (k 2 f 1; :::; K g),
sets! � xk = 1=K , and then runs Alg. 2. Table 3
shows accuracy for VALC's different schemes. As
expected, random pruning barely improves upon
the unedited model. Unweighted pruning improves
upon the unedited model by1:5 � 3:5%. Weighted
pruning improves the accuracy by around11%
upon the unedited model on 20 Newsgroups and
M10. See Appendix G for more quantitative re-
sults. For example, Table 6 shows the that VALC
outperform baselines on thefaithfulnessscore.

5.4 Conceptual Interpretation (More for
Different Tasks in Appendix F)

Dataset-Level Interpretations. As a case study,
we train VALC on M10, sample6 concepts (topics)
from the dataset, and plot the word embeddings of
the top words (closest to the center� k ) in these con-
cepts using PCA in Fig. 4(left and middle). We can
observe Concept 5 is mostly about data analysis,
including words such as `sampling' and `similar-
ity'. Concept 84 is mostly about reasoning, with
words `explore', 'accept', `explain', etc. Concept
62 is mostly about nature, with words `environ-
ment', `formation', `growth', etc. Concept 98 is
mostly about farming, with words `term', `sum-
mer', `heating', etc. Concept 24 is mostly about
economics, with words `forthcoming', `prospect',
`grow', etc. Concept 74 is mostly about social con-
tact, containing words such as `peer', `connect',
and `collaborative'. Interestingly, Concept 24 (eco-
nomics) and Concept 74 (social contact) are both
related to social science and are therefore closer
to each other in Fig. 4(middle), while Concept 98
(farming) is farther away, showing VALC's cability
of capturing concept similarity.

Document-Level Interpretations. Fig. 4(right)
shows that VALC can provide conceptual interpre-
tations on why correct or incorrect FLM predic-
tions happen for speci�c documents. For exam-
ple, document (e) belongs to class 2 (biology), but
BERT misclassi�es it as class 9 (social science);
our VALC interprets that this is because document
(e) involves Concept 24 (economics), which is re-
lated tosocial science. On the other hand, docu-
ment (b) is related to machine learning and BERT
correctly classi�es it as class 3 (computer science);
VALC interprets that this is because document (b)
involves Concept 5 (data analysis).

Word-Level Interpretations. Fig. 4(right) also
shows that VALC can interpret which words and
what concepts of these words lead to speci�c FLM
predictions. For example, document (f) belongs to
class 7 (petroleum chemistry), but BERT misclas-
si�es it as class 0 (agriculture); VALC attributes
this to the word `air', which belongs to Concept 98
(farming). For document (b), VALC interprets that
BERT correctly classi�es it as class 3 (computer
science) because the document contains the word
`kernel' that belongs to Concept 5 (data analysis).

6 Conclusion

We address the challenge of multi-level interpre-



Figure 4: Visualization of VALC's three-level conceptual interpretation.Left and Middle: Dataset-level interpreta-
tion with 6 concepts'� k and� k with nearest word embeddings (3 concepts per plot for clarity).Right: Top words
in each concept and6 example documents with the associated document-level and word-level interpretations.

tations for FLM predictions by de�ning concep-
tual interpretation and introducing VALC, the �rst
method to infer such interpretations effectively.
Empirical results are promising, and theoretical
analysis con�rms that VALC reliably produces op-
timal conceptual interpretations by our de�nition.

7 Limitations

Our proposed method assumes access to the hidden
layers of Transformer-based models, and therefore
can be naturally extended to Transformer-based
models including RoBERTa (Liu et al., 2019), De-
BERTa (He et al., 2021), ALBERT (Lan et al.,
2019), and Electra (Clark et al., 2020). Although
our VALC is initially designed for Transformer-
based models, it is also generalizable to other
architectures, such as Convolutional Neural Net-
works (CNNs) (LeCun et al., 2015) and Long Short-
Term Memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997), by simply setting identical
attention weights. Future work may include ex-
tending VALC beyond Transformer variants and
natural language applications.
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A Details on Learning VALC

Update Rules.Similar to Sec. 3.4.1 of the main paper, we expand the ELBO in Eq. 2 of the main paper,
take its derivative w.r.t.� k and set it to0:

@L
@� k

=
X

m;j

� mjk wmj � � 1
k (emj � � k ) = 0 ; (9)

yielding the update rule for learning� i :

� k =

P
m;j � mjk wmj emj
P

m;j � mjk wmj
; (10)

where� � 1
k is canceled out. Similarly, setting the derivatives w.r.t.� to 0, i.e.,

@L
@� k

=
1
2

X

m;j

� mjk wmj (� � � 1
k + � � 1

k (emj � � k )(emj � � k )T � � 1
k ); (11)

we have

� k =

P
m;j � mjk wmj (emj � � k )(emj � � k )T

P
m;j � mjk wmj

: (12)

Figure 5: Probabilistic graphical model of smoothed VALC.

Smoothing with Prior Distributions on f (� k ; � k )gK
k=1 . To alleviate over�tting and prevent singularity

in numerical computation, we impose priors distributions on� k and� k to smooth the learning process
(Fig. 5). Speci�cally, we use a Normal-Inverse-Wishart prior on� i and� i :

� k � IW (� 0; � 0);

� k j� k � N (� 0; � k=� 0);

where� 0, � 0, � 0, and� 0 are hyperparameters for the prior distributions. Taking the expectations of� k

and� k over the posterior distibutionN IW (� k ; � k j� (n)
k ; � (n)

k ; � (n)
k ; � (n)

k ), we have the update rules as:

� k  EN IW [� k ] =
� 0� 0 + nk ~� k

� 0 + nk
; (13)

� k  EN IW [� k ] =
� 0 + Sk + � 0nk

� 0+ nk
( ~� k � � 0)( ~� k � � 0)T

� 0 + nk � K � 1
; (14)

Sk =
X

m;j
� mjk wmj (emj � ~� k )(emj � ~� k )T : (15)

wherenk =
P

m;j � mjk wmj is the total virtual word counts used to estimate� k and� k . Eq. 13 and Eq. 14
are the smoothed version of Eq. 7 of the main paper. From the Bayesian perfective, they correspond to the



expectations of� k 's and� k 's posterior distributions. Alg. 1 of the main paper summarizes the learning
of VALC.

Online Learning of � k and � k . Note that FLMs are deep neural networks trained using minibatches
of data, while Eq. 13 and Eq. 14 need to go through the whole dataset before each update. Inspired
by Hoffman et al. (2010); Oord et al. (2017), we using exponential moving average (EMA) to work with
minibatchs. Speci�cally, we update them as:

� k  � � N � � k + (1 � � ) � B � ~� k ;

� k  � � N � � k + (1 � � ) � B � ~� k ;

N  � � N + (1 � � ) � B;

� k  
� k

N
; � k  

� k

N
;

whereB is the minibatch size,N is a running count, and� 2 (0; 1) is the momentum hyperparameter.~� k
and ~� k are the updated� k and� k after applying Eq. 13 and Eq. 14 only on thecurrent minibatch.

Effect of Attention Weights. Interestingly, we also observe that FLMs' attention weights on stop words
such as `the' and `a' tend to be much lower; therefore VALC can naturally ignore these concept-irrelevant
stop words when learning and inferring concepts (as discussed in Sec. 3.4.2). This is in contrast to typical
topic models (Blei et al., 2003; Blei, 2012) that require preprocessing to remove stop words.

Phrase-Level Interpretations.We can easily infer phrase-level concepts from word-level concepts by
treating phrases as sub-documents and adapting Eq. 6 (which provides document-level concepts) in the
paper. Speci�cally, suppose for a given phrase spanning from ther -th word to thes-th word in document
m, we can adapt Eq. 6 to provide phrase-level conceptual explanations as (r;s )

mk = � k +
P s

j = r � mjk wmj .

Here (r;s )
mk is the strength of conceptk for the given phrase in documentm. In this way, (r;s )

mk can serve
as the phrase-level concept explanation of the phrase spanning fromr -th word to thes-th word; this is
another interesting complementary sub-document-level concept explanation between the word level and
the document level.

B Interpretation of the ELBO

VALC's evidence lower bound (ELBO), i.e., Eq. 2 in the paper, is

L ( m ; f � m[1:Jm ]g; �; f (� [1:K ]; � [1:K ])g) = Eq[logp(� m j� )] +
X Jm

j =1
Eq[logp(zmj j� m )]

+
X Jm

j =1
Eq[logp(emj jzmj ; � zmj ; � zmj )]

� Eq[logq(� m )] �
X Jm

j =1
Eq[logq(zmj )]: (16)

Derivation of the Evidence Lower Bound. We derive the evidence lower bound by com-
puting the log likelihood of each term. For example, by de�nition,p(emj jzmj ; � zmj ; � zmj ) =
[N (emj ; � mj ; � mj )]wmj , whereN (�) is the Gaussian distribution. Then we derive the third term
P Jm

j =1 Eq[logp(emj jzmj ; � zmj ; � zmj )] in Eq. 16 as follows:

Eq[logp(emj jzmj ; � zmj ; � zmj )] =
X

k

� mjk wmj logN (emj j� k ; � k )

=
X

k

� mjk wmj f�
1
2

(emj � � k )T � � 1
k (emj � � k )

� log[(2� )d=2j� k j1=2]g: (17)



Table 4: Dataset statistics, including the number of documents (M ), vocabulary size (V ), the number of corpus
categories (L ), and the average document length (J ).

Dataset M V L J

20 Newsgroups 16,309 1,612 20 48
M10 8,355 1,696 10 5.9
BBC News 2,225 2,949 5 120

Expanding the ELBO to the Loss Function.We can expand the ELBO in Eq. 2 of the main paper as:

L ( ; � ; � ; f � gK
k=1 ; f � gK

k=1 ) = log � (
KX

k=1

� k ) �
KX

k=1

log � (� k ) +
KX

k=1

(� k � 1)(	(  k ) � 	(
KX

k 0=1

 k 0))

+
JX

j =1

KX

k=1

� jk (	(  k ) � 	(
KX

k 0=1

 k 0))

+
X

j;k

� jk wj f�
1
2

(ej � � k )T � � 1
k (ej � � k ) � log[(2� )d=2j� k j1=2]g

� log � (
KX
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 j ) +
KX

k=1

log � ( k ) �
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k=1

( k � 1)(	(  k ) � 	(
KX

k 0=1

 k 0))

�
JX

j =1

KX

k=1

� jk log � jk : (18)

De�nition and Interpretation of the Loss Function. We can interpret the meaning of each term of
ELBO as follows:

• Regularization Term for Document-Level Explanations. The sum of the �rst and the fourth
terms, namelyEq[logp(� m j� )] � Eq[logq(� m )], is equal to� KL (q(� m )jp(� m j� )) , which is
the negation of KL Divergence between the variational posterior probabilityq(� m ) and the prior
probabilityp(� m j� ) of the topic proportion� m for documentm. Therefore maximizing the sum of
these two terms is equivalent to minimizing the KL DivergenceKL (q(� m )jp(� m j� )) ; this serves as
a regularization term to make sure the inferredq(� m ) is close to its prior distributionp(� m j� ).

• Regularization Term for Word-Level Explanations. Similarly, the sum of the second and the last
terms (ignoring the summation over the word indexj for simplicity), namelyEq[logp(zmj j� m )] �
Eq[logq(zmj )] is equal to� KL (q(zmj )jp(zmj j� m )) , which is the negation of the KL Divergence
between the variational posterior probabilityq(zmj ) and the prior probabilityp(zmj j� m ) of the
word-level topic assignmentzmj for word j of documentm. Therefore maximizing the sum of these
two terms is equivalent to minimizing the KL DivergenceKL (q(zmj )jp(zmj j� m )) ; this serves as a
regularization term to make sure the inferredq(zmj ) is close to its `prior' distributionp(zmj j� m ).

• Likelihood Term to Indicate How Much FLM Information is Explained. The third termP Jm
j =1 Eq[logp(emj jzmj ; � zmj

; � zmj )] is to maximize the log likelihoodp(emj jzmj ; � zmj
; � zmj )

of every contextual embeddingemj (for word j of documentm) conditioned on the inferredzmj and
the parameters(� zmj

; � zmj ).

In this way, we expand the ELBO to a concrete loss function. Each line of Eq. 18 corresponds to the
expansion of each of the �ve terms in the ELBO mentioned above (i.e., Eq. 2 in the paper).

C Experimental Settings and Implementation Details

We will release all code, models, and data. Below we provide more details on the experimental settings
and practical implementation.

Data Preprocessing and More Datasets.We follow Terragni et al. (2021) and Zhang et al. (2022)
to pre-process these datasets. The statistics of the datasets are summarized in Table 4. We use the
standard 8:1:1 train/validation/test set split. We also use the GLUE benchmark (Wang et al., 2018) to



performadditionalconceptual interpretation in this section and Sec. F. This benchmark includes multiple
sub-tasks of predictions, with the paired sentences as inputs. In this paper, we use 4 datasets from GLUE
(MRPC, RTE, STS-B, and QQP) to show contextual interpretations. Speci�cally, we apply VALC to
multiple complex natural language understanding (NLU) tasks in the GLUE benchmark. For example,
in Appendix F, we show the three-level conceptual explanations offour different tasksin the GLUE
benchmark using VALC, i.e.,

• Microsoft Research Paraphrase Corpus (MRPC), where the task is paraphrase identi�cation and
semantic textual similarity,

• Recognizing Textual Entailment (RTE), where the task is to determine whether one sentence (the
premise) entails another sentence (the hypothesis),

• Semantic Textual Similarity Benchmark (STS-B), where the task is to measure the degree of
semantic similarity between pairs of sentences (from 0 to 5), and

• Quora Question Pairs (QQP), where the task is to classify whether one question is the duplicate of
the other.

Implementation. We implemented and trained the model using PyTorch (Paszke et al., 2019) on an
A5000 GPU with 24GB of memory. The training duration was kept under a few hours for all datasets.
We utilized the Adam optimizer (Kingma and Ba, 2014) with initial learning rates varying between
10� 5 � 10� 3, tailored to the speci�c requirements of each dataset.

Visualization Postprocessing.For better showcase the dataset-level concepts as in Fig. 4 of the main
paper, we may employ simple linear transformations on the embedding of words after the aforementioned
PCA step, in order to scatter all the informative words on the same �gures. However, for some datasets
such as STS-B, this is not necessary; therefore we do not use it for these datasets.

Topic (Concept) Identi�cation. Inspired by Blei et al. (2003), we identify meaningful topics by listing
the top-5 topics for each word, computing the inverse document frequency (IDF), and �ltering out topics
with the lowest IDF scores. Note that although GLUE benchmark are datasets that consists of documents
with small size, making it particularly challenging for traditional topic models (such as LDA) to learn
topics; interestingly our VALC can still perform well in learning the topics. We contribute this to the
following observations: (1) Compared to traditional LDA usingdiscreteword representations, VALC
usescontinuousword embeddings. In such a continuous space, topics learned for one word can also help
neighboring words; this alleviates the sparsity issue caused by short documents and therefore learns better
topics. (2) VALC's attention-based continuous word counts further improves sample ef�ciency. In VALC,
important words have larger attention weights and therefore larger continuous word counts. In this case,
oneimportant word in a sentence possesses statistical (sample) power equivalent tomultiplewords; this
leads to better sample ef�ciency in VALC.

Computational Complexity. Our VALC introduces minimal overhead in terms of model training cost.
Speci�cally, VALC's computational complexity isO(TKd 2), whereT is the number of epochs (a small
number, such as 3, is suf�cient for convergence),K is the number of concepts, andd is the dimension of
the embeddings (in hidden layers). This means that VALC's computational costscales linearlywith the
number of conceptsK (similar to existing methods).

More NLP Tasks. VALC can be naturally applied to other NLP tasks, such as named entity recognition
(NER), reading comprehension, or question answering. Speci�cally, these tasks involve transformer
predictions from multiple positions within the context, rather than relying solely on the `CLS' token.
For example, NER predicts each token in the document as the beginning (`B') of an entity, the inside
(`I') of entities, etc. To accommodate this and use VALC to explain each tokenj in the context, we can
substitute the attention from the `CLS' token with (1) the attention from the `CLS' token to all tokens of
the previous layer with (2) the attention from tokenj to all tokens of the previous layer in transformers
(e.g., using the attention weights from the predicted label `B' to all tokens of the previous layer asam in
VALC). This adaptation allows VALC to maintain its explanatory power across various NLP applications,
demonstrating its versatility and effectiveness in a wide range of tasks.



D More Details on Concept Editing

We perform concept pruning to the CLS embeddings for VALC (details in Alg. 2). Since BERTopic and
CETopic can infer concepts (topics) only at the document level, their only choice is to prune a concept by
completely removing input tokens assigned to the concept (as mentioned in Sec. 5.1 and 5.2). To compare
our learned concepts with the baseline models, we �rst follow their con�gurations (Grootendorst, 2020;
Zhang et al., 2022) to �x BERT model parameters when learning the topics/concepts, train a classi�er on
top of the �xed contextual embeddings, and then perform concept pruning (Koh et al., 2020) for different
evaluated models on the same classi�er. Note that concept editing is deterministic; therefore, we conduct
our experiments with a single run.

Speci�cally, we assume each BERT model contains a backbone and a classi�er. To perform concept
editing:
(1) We �rst train a classi�er on top of the�xed BERT embeddings generated by the�xed backbone to get

the original accuracy in the `Unedited' column (in Table 2 and Table 3 of the main paper).
(2) We then apply the same embedding cluster methods to these BERT embeddings to infer the con-

cepts/topics for each dataset.
(3) Finally, with the inferred concepts/topics from the baselines (SHAP/LIME, BERTopic and CETopic

in Table 2 of the main paper) and our VALC variants (Unweighted and Weighted in Table 3 of the
main paper), we perform concept editing and feed the concept-edited embeddings into the trained
classi�er from Step (1) to compute the editing accuracy for different methods.

Since here onedoes not fully �netune the BERT model(i.e., keeping the backbone �xed), the editing
accuracy is expected to be lower than the `Finetune' column (in Table 2 and Table 3 of the main paper),
which serves as the oracle. Table 2 of the main paper shows that our VALC learns better concepts than
the baselines, and Table 3 of the main paper shows that the weighted variant of VALC performs better.

Algorithm 3: Algorithm for VALC Document-Level Concept Editing

Input: FLM f (�), classi�erg(�), classi�cation lossL , datasetfD m gM
m=1 , labelsy , constant factor

! .
for m = 1 : M do

cm = f (Dm )
x � = QP(cm ; f � kgK

k=1 )
k� = arg min K

k=1 L(g(cm � ! � x �
k � k ); ym )

cm  cm � ! � x �
k � � k �

Note that SHAP and LIME both interpret the CLS token's embedding, and hence their concept vectors
have the same dimension as the FLM embedding vector (768 in our case). When we conduct concept
editing on thek'th dimension/concept, we simply subtract the CLS embedding's dimensionk with the
average value in the batch on dimensionk (which means that we know little about the concept/dimension
k on this document), and keep values of the other dimensions unchanged. Note that the pruning process
is exactly the same for SHAP and LIME. Therefore SHAP and LIME have identical test accuracy and
accuracy gain.

Document-Level Concept Editing. We describe the document-level concept editing algorithm of
VALC in Alg. 3. cm denotes the `CLS' embedding of documentm (see Fig. 2 of the main paper).

E Connections Between the De�ned Properties and Empirical Results

VALC is able to show which words or embeddings contributed to the document-level conceptk. Speci�-
cally, our variational parameter (a vector)� mj 2 RK describes how much wordj contributes to document
m. For example, thek-th entry of � mj , denoted as� mjk in the paper, describes how much wordj
contributes to documentm in terms of conceptk. Therefore, one could usearg maxj � mjk to �nd the
word that contributes most to documentm's conceptk. Below, we will explain these four properties
using Fig. 4 as a running example.

(1) Multi-Level Structure ensures that VALC learns the dataset-, document-, and word-level concepts
jointly. In Fig. 4:



– Dataset-levelconcepts are highlighted by the top words of each concept (the top right box of
Fig. 4) and the distribution of their embeddings in the FLM (left and middle �gures of Fig. 4);
for example,Concept 5 (data analysis)is marked in red.

– Document-levelconcepts are demonstrated by each document's topic; for instance, in the box
for document (a) in Fig. 4 (right), VALC identi�esTopic (Concept) 5as key to the FLM's
prediction of the label 3 (computer science).

– Word-level concepts are identi�ed by words in documents. For example, in the box for
document (a) in Fig. 4, VALC highlights the words `genetic' and `neural' because they are
highly related toConcept 5 (data analysis). Terms like `genetic algorithms' and `neural
networks' are related to data analysis, aligning with the document-level concept.

(2) Normalization ensures that concept learning is regulated and smoothed, with inferred concepts
appearing reasonable. Speci�cally, in the document-level explanation� m and word-level explanation
� mj , all concepts are assigned a value within the range of0 � 1, and all entries sum up to 1, i.e.,
P K

k=1 � mijk = 1 and
P K

k=1 � mk = 1 . This introduces `competition' among different concepts; a
larger strength for one concept means smaller strength for other concepts. Therefore, together with
the help of the Dirichlet prior, it implicitly encourages sparser concept-level explanations� m , which
are more aligned with humans' cognitive processes and more human-understandable (humans tend
to make decisions with asmallset of concepts).

(3) Additivity enables FLMs to incorporate relevant concepts and exclude irrelevant ones, thereby
enhancing prediction accuracy (as shown in Table 2 and Table 3). For example, in document (a) of
Fig. 4, VALC identi�es Concept 5as a highly related concept, distinguishing it from less related
concepts. In practice, this may help practitioners identify key concepts in model prediction and more
effectively intervene to improve model prediction accuracy (e.g., an expert may �nd that a concept is
relevant and manually down-weight the concept to enhance the model's prediction).

(4) Mutual Information Maximization ensures a strong correlation between (1) VALC's generated
concept explanations and (2) the explained model's representation and predictions. In other words,
it ensures that VALC is explaining the target FLM, rather than generating concept explanations
irrelevant to the target FLM. For instance, in document (a) of Fig. 4, the inferred document-level
Concept 5(data analysis) effectively explains the FLM prediction, i.e., label 3 (computer science),
by highlighting the intrinsic link between the data analysis concept and the class label computer
science. This connection is evidenced by the words in dataset-levelConcept 5(top right box). The
mutual information between the inferredConcept 5(data analysis) and label 3 (computer science)
contributes to generating high-quality explanations.

F More Conceptual Interpretation Results in Different Downstream Tasks

Dataset-Level Interpretations. As in the main paper, we leverage VALC as an interpreter on MRPC,
RTE, STS-B and QQP, respectively, sample3; 3; 4; 4 concepts (topics) for each dataset respectively,
and plot the word embeddings of the top words (closest to the center� i ) in these concepts using PCA.
Fig. 6(left) shows the concepts from MRPC. We can observe Concept 20 is mostly aboutpolicing,
including words such as `suspect', `police', and `house'. Concept 24 is mostly aboutpolitics, including
words such as `capital', `Congress', and `Senate'. Concept 27 contains mostlynamessuch as `Margaret'
and `Mary'. Similarly, Fig. 6(right) shows the concepts from RTE. We can observe Concept 67 is related to
West Asiaand includes words such as `Quran' and `Pasha'. Concept 13 is related toEuropeand includes
European countries/names such as `Prussia' and `Salzburg'. Concept 91 is mostly abouthealthcareand
includes words such as `physiology' and `insulin'. Fig. 7 shows the concepts from STS-B. We can observe
Concept 63 is mostly abouthousehold and daily life, including words such as `trash', `�owers', `airs',
and `garden'. Concept 60 is mostly abouttools, including words such as `stations', `rope', `parachute',
and `hose'. Concept 84 is mostly aboutnational security, including words such as `guerilla', `NSA',
`espionage', and `raided'. Concept 55 contains mostlycountries and citiessuch as `Kiev', `Moscow',



Figure 6: Visualization of VALC's learned topics of contextual word embeddings.Left: MRPC's dataset-level inter-
pretation with two example documents. Concept 83 is relatively far from the other three concepts in the embedding
space; therefore we omit it on the left panel for better readability.Right: RTE's dataset-level interpretation with
three example documents.

Figure 7: Visualization of VALC's learned topics of contextual word embeddings. We show STS-B's dataset-level
interpretation with six example documents. The prediction of VALC is between the range of[0; 5].

`Algeria', and `Ukrainian'. Similarly, Fig. 8 shows the concepts from QQP. We can observe that Concept
12 is mostly aboutnegative attitude, including words such as `boring', `criticism', and 'blame'. Concept
73 is mostly aboutPsychology, including words such as `adrenaline', `haunting', and 'paranoia'. Concept
34 is mostly aboutprevention and conservatives, including words such as `destroys', `unacceptable', and
'prohibits'. Concept 64 is mostly aboutstrategies, including words such as `rumours', `boycott', and
'deportation'.

Document-Level Interpretations. For document-level conceptual interpretations, we sample two
example documents from MRPC (Fig. 6(left)), three from RTE (Fig. 6(right)), six from STS-B (Fig. 7)
and eight from QQP (Fig. 8), respectively, where each document contains a pair of sentences. The MRPC
task is to predict whether one sentence paraphrases the other. For example, in the �rst document of MRPC,
we can see that our VALC correctly interprets the model prediction `True' with Concept 24 (politics). The
RTE task is to predict whether one sentence entail the other. For example, in the second document of
RTE, VALC correctly interprets the model prediction `True' with Concept 13 (countries). The STS-B task
is to predict the semantic similarity between two sentences with the score range of[0; 5]. For example,



Figure 8: Visualization of VALC's learned topics of contextual word embeddings. We show QQP's dataset-level
interpretation with eight example documents.

Table 5: Example concepts on RTE dataset learned by VALC.

Concepts Top Words

bio-chem cigarette biological ozone cardiovascular chemist liver chemical toxin
citizenship indies bolivian �ji surrey jamaican dutch latino caribbean
names mozart spielberg einstein bush kurt liszt hilton lynn
conspiracy secretly corrupt disperse infected ill hidden illegally sniper
administration reagan interior ambassador prosecutor diplomat legislative spokesman embassy
crime fraud laundering sheriff prosecutor corruption fool robber greed

in Document (a) of Fig. 7, we can see that VALC correctly interpret the model's predicted similarity
score 0̀:118' (which is relatively low,) with Concept 63 (household and daily life) and Concept 60 (tools).
Similarly, in Document (f) of Fig. 7, we can see that VALC correctly interpret the model's predicted
similarity score 4̀:672' (which is relatively high) with Concept 84 (national security). The QQP task
is to predict whether the two questions are paraphrase of each other. For example, in Document (b) of
Fig. 8, we can see that VALC correctly interprets the model's predicted label `False' with Concept 73
(Psychology). Similarly, in Document (e) of Fig. 8, we can see that VALC correctly interprets the model's
predicted label `True' with Concept 64 (strategies).

Word-Level Interpretations. For word-level conceptual interpretations, we can observe that VALC
interpret the FLM's prediction on MRPC's �rst document (Fig. 6(left)) using words such as `senate' and
`bitty' that are related to politics. Note that the word `bitty' is commonly used (with `little') by politicians
to refer to the small size of tax relief/cut plans. Similarly, for RTE's �rst document (Fig. 6(right)), VALC
correctly identi�es Concept 67 (West Asia) and interprets the model prediction `False' by distinguishing
between keywords such as `Jihad' and `Al Qaeda'. likewise, we can observe that VALC interprets FLM's
prediction on Document (c) of Fig. 7 using words such as `cat', `�oor', and `garlic' that are related to
household and daily life. Also, VALC interprets FLM's prediction on Document (e) of Fig. 7 using words
such as `soldier' and `border' that are related to national security. Similarly, for QQP's Document (d)
(Fig. 8), VALC correctly interprets the model prediction `True' by identifying keywords such as `sabotage'
and `oppose' with similar meanings in the topic of strategies. For QQP's Document (g), (Fig. 8), VALC
interprets the words in the both sentences with the same semantics, such as `conservative' that is related to
prevention and conservatives (note that in politics, `conservative' refers to parties that tend to prevent/block
new policies or legislation), and thereby predicting the correct label `True'.

Example Concepts.Following Blei et al. (2003), we show the learned concepts on the RTE dataset
in Table 5, which is complementary to aforementioned explanations. We select several different topics



Table 6: Additional results for the faithfulness (in terms of accuracy percentage (%)) of VALC and baselines on the
20 Newsgroups, M10, and BBC News datasets. We mark the best results withbold face.

Methods 20 Newsgroups M10 BBC News Average on Three Datasets
SHAP/LIME 5.8 13.9 22.9 14.2
BERTopic 17.2 87.6 64.6 56.5
CETopic 79.2 96.4 100.0 91.9

VALC 89.8 99.5 100.0 96.4

Table 7: Comparison of Unedited and Unedited+� on 20 Newsgroups, M10, and BBC News. We mark the best
results withbold face.

Unedited Unedited+�
20 Newsgroups 51.26 51.74
M10 69.74 70.76
BBC News 93.72 94.90

from Fig. 6. As in Sec. 5.4 of the main paper, we obtain top words from each concept via �rst calculating
the average of the each word's corresponding contextual embeddings over the dataset, and then getting
the nearest words to each topic center (� k ) in the embedding space. As we can see in Table 5, VALC can
capture various concepts with profound and accurate semantics. Therefore, although FLM embeddings
are contextual and continuous, our VALC can still �nd conceptual patterns of words on the dataset-level.

G More Quantitative Results.

Faithfulness.Following (Lyu et al., 2024), we conducted additional experiments to evaluate the faithful-
ness metric. The faithfulness metric is implemented as the accuracy score of predictions using logistic
regression, with the inferred conceptual explanations as inputs. Table 6 shows the faithfulness of VALC
and baselines on the 20 Newsgroups, M10, and BBC News datasets. These results show that our VALC
signi�cantly outperforms the baseline models, achieving the highest faithfulness accuracy scores in the 20
Newsgroups (89:8%), M10 (99:5%), and BBC News (100:0%) datasets.

Note that the dataset size of 20 Newsgroups, M10, and BBC News is16;309, 8;355, and2;225,
respectively. BBC News contains signi�cantly less data, making it easier to achieve a high faithfulness
score. This explains why both CETopic and our VALC obtain a faithfulness score of100:0%.

Baseline methods such as BERTopic and CETopic represent language concepts as discrete bags of
words, which lack �exibility and accuracy. In contrast, VALC infers continuous concepts for datasets,
documents, and words with theoretical guarantees. Consequently, it provides optimal and faithful
conceptual explanations of high quality.

Document Classi�cation with VALC Concepts. We conducted additional experiments to perform
document classi�cation using the `CLS' token's embedding and� (inferred from VALC) as features. Ta-
ble 7 shows the results on three datasets. The results show that our VALC can learn meaningful concept
vector� , which can improve model predictions of document labels.

H Theory on the Mutual Information Maximization Property

We provide the following proof of Theorem 4.1 of the main paper.
For convenience, let
 = ( � K

k=1 ; � K
k=1 ), and� = ( � m ; zm ).

We then introduce a helper joint distribution of the variablesem and� , s(em ; � ) = p(em )q(� jem ).
According to the de�nition of ELBO of Section 3.4.1, in Eq. 8, we have

LHS = L( m ; � m ; �; 
) = Ep(em ) [Eq(� ) [logp(em j
 ; � )]] + Eq(� ) [logq(� j
)] : (19)



SinceEq(� ) [logq(� j
)] � 0, we only need to prove that

Ep(em ) [Eq(� ) [logp(em j
 ; � )]] � I s(em ; � ) � H (em ) = RHS: (20)

Then we have that

Ep ( em ) [Eq [log p(em j �; 
)]] � Ep ( em ) [Eq [log p(em j � )]]

= Ep ( em ) [Eq [log
q(em j � )

p(em )

p(em )p(em j � )

q(em j � )
]]

= Ep ( em ) [Eq [log
q(em j � )

p(em )
]] + Ep ( em ) [Eq [log p(em )]] + Ep ( em ) [Eq [log

p(em j � )

q(em j � )
]]

= I s (em ; � ) � H (em ) � Eq [KL (q(em j � ) jp(em j � ))]

� I s (em ; � ) � H (em ) � 0 = RHS; (21)

which concludes the proof of Theorem 4.1.

I Theoretical Analysis on Continuous Word Counts

Before going to the claims and proofs, �rst we specify some basic problem settings and assumptions.
Suppose there areK + 1 topic groups, each of which is regarded to be sampled from a parameterized
multivariate Gaussian distribution. In speci�c, theK + 1 'th distribution of topic has a much larger
covariance, and in the same time, closed to the center of embedding space. The prementioned properties
can be measured by a series of inequalities:

The approximate marginal log-likelihood of word embeddings, i.e., the third term of the ELBO as
mentioned in Eqn. 2 of the main paper, is:

L (train ) =
X Jm

j =1
Eq[logp(emj jzmj ; � zmj

; � zmj )]

=
X

m;j;k

� mjk wmj f�
1
2

(emj � � k )T � � 1
k (emj � � k ) � log[(2� )d=2j� k j1=2]g: (22)

The above equation is the training objective, yet for fair comparison of different training schemes, we
calculate the approximated likelihood with word count1 for all words.

L (eval) =
X Jm

j =1
Eq[logp0(emj jzmj ; � zmj

; � zmj )]

=
X

m;j;k

� mjk f�
1
2

(emj � � k )T � � 1
k (emj � � k ) � log[(2� )d=2j� k j1=2]g: (23)

I.1 Gaussian Mixture Models

Suppose we have a ground truth GMM model with parameters� � 2 RK andf � �
k ; � �

kgK
k=1 , with K

different Gaussian distributions. In the dataset, letN andNs denote the numbers of non-stop-words and
stop-words, respectively. Then the marginal log likelihood of a learned GMM model on a given data
samplee can be written as

p(ejf � ; � g; � ) =
KX

k=1

� kN (e; � k ; � k ): (24)

Assuming a dataset ofN + Ns wordsf ei g
N + N s
i =1 and taking the associated weightswi for each word into

account, the log-likelihood of the dataset can be written as

N + N sX

i =1

p( e i jf � k ; � k gK
k =1 ; � ) =

NX

i =1

log
KX

k =1

w i � k N ( e i ; � k ; � k ) +
N + N sX

i = N +1

log
KX

k =1

w i � k N ( e i ; � k ; � k ) : (25)



Leveraging Jensen's inequality, we obtain a lower bound of the above quantity (denoting as� the
collection of parametersf � k ; � kgK

k=1 and� ):

L GMM ( � ; f w i g) =
NX

i =1

w i log
KX

k =1

� k N ( e i ; � k ; � k ) +
N + N sX

i = N +1

w i log
KX

k =1

� k N ( e i ; � k ; � k ) + C; (26)

where C is a constant.
In the following theoretical analysis, we consider the following three different con�gurations of the

weightswi .

De�nition I.1 (Weight Con�gurations ). We de�ne three different weight con�gurations as follows:

• Identical Weights:wi = 1
N + N s

, i 2 f 1; 2; : : : ; N + Nsg

• Ground-Truth Weights :wi =

(
1
N ; i 2 f 1; 2; : : : ; N g

0; i 2 f N + 1 ; N + 2 ; : : : ; N + Nsg

• Attention-Based Weights:wi =

(
� 1 2 [ 1

N + N s
; 1

N ]; i 2 f 1; 2; : : : ; N g

� 2 2 [0; 1
N + N s

]; i 2 f N + 1 ; N + 2 ; : : : ; N + Nsg

De�nition I.2 (Advanced Weight Con�gurations). We de�ne three different weight con�gurations as
follows:

• Identical Weights:wi = 1
N + N s

, i 2 f 1; 2; : : : ; N + Nsg

• Ground-Truth Weights :wi =

(
1
N ; i 2 f 1; 2; : : : ; N g

0; i 2 f N + 1 ; N + 2 ; : : : ; N + Nsg

• Attention-Based Weights:wi 2

(
[ 1
N + N s

; 1
N ]; i 2 f 1; 2; : : : ; N g

[0; 1
N + N s

]; i 2 f N + 1 ; N + 2 ; : : : ; N + Nsg

De�nition I.3 (Optimal Parameters). With De�nition I.1, the corresponding optimal parameters are
then de�ned as follows:

� I = arg max
�

L (� ; w ! Identical); (27)

� G = arg max
�

L (� ; w ! GT); (28)

� A = arg max
�

L (� ; w ! Attention); (29)

wherew ! Identical, w ! GT, andw ! Attentionindicates that `Identical Weights', `Ground-Truth
Weights', and `Attention-Based Weights' are used, respectively.

Lemma I.1. Suppose we have two series of functionsf f 1;i (x)g andf f 2;i (x)g, with two non-negative
weighting parameters� 1; � 2 satisfyingN� 1 + Ns� 2 = 1 . We de�ne the �nal objective functionf (�) as:

f (x; � 1; � 2) = � 1

NX

i =1

f 1;i (x) + � 2

N sX

i = N +1

f 2;i (x): (30)

We assume two pairs of parameters(� 1; � 2) and(� 0
1; � 0

2), where

� 1 � � 0
1; (31)

� 2 � � 0
2: (32)



De�ning the optimal values of the objective function for different weighting parameters as

x̂ = arg max
x

f (x; � 1; � 2); (33)

x̂0 = arg max
x

f (x; � 0
1; � 0

2); (34)

we then have that

f (x̂;
1
N

; 0) � f (x̂0;
1
N

; 0): (35)

Proof. We prove this theorem by contradiction. Suppose that we have

f (x̂;
1
N

; 0) < f (x̂0;
1
N

; 0): (36)

According to Eq. 31, i.e.,� 1 � � 0
1, and the equationN� 1 + Ns� 2 = 1 , we have

� 1� 0
2 = � 1

1 � N� 0
1

Ns
� � 0

1
1 � N� 1

Ns
= � 0

1� 2: (37)

According to Eq. 34, we have the following equality:

f (x̂; � 0
1; � 0

2) � f (x̂0; � 0
1; � 0

2): (38)

Combined with the aforementioned assumption in Eq. 36, we have that

� 0
2f (x̂; � 1; � 2) = � 1� 0

2

NX

i =1

f 1;i (x̂) + � 2� 0
2

N sX

i = N +1

f 2;i (x̂) (39)

=( � 0
1� 2

NX

i =1

f 1;i (x̂) + � 0
2� 2

N sX

i = N +1

f 2;i (x̂)) + ( N (� 1� 0
2 � � 0

1� 2) �
1
N

NX

i =1

f 1;i (x̂)) (40)

= � 2f (x̂; � 0
1; � 0

2) + N (� 1� 0
2 � � 0

1� 2)f (x̂;
1
N

; 0) (41)

<� 2f (x̂0; � 0
1; � 0

2) + N (� 1� 0
2 � � 0

1� 2)f (x̂0;
1
N

; 0) (42)

=( � 0
1� 2

NX

i =1

f 1;i (x̂0) + � 0
2� 2

N sX

i = N +1

f 2;i (x̂0)) + ( N (� 1� 0
2 � � 0

1� 2) �
1
N

NX

i =1

f 1;i (x̂0)) (43)

= � 1� 0
2

NX

i =1

f 1;i (x̂0) + � 2� 0
2

N sX

i = N +1

f 2;i (x̂0) (44)

= � 0
2f (x̂0; � 1; � 2); (45)

which contradicts the de�nition of̂x in Eq. 33 (i.e.,̂x maximizesf (x; � 1; � 2)), completing the proof.

Lemma I.2. Suppose we have two series of functionsf f 1;i (x)g andf f 2;i (x)g, with two series of non-
negative weighting parameters� 1 = [ � 1;i ]Ni =1 ; � 2 = [ � 2;i ]

N s
i = N +1 satisfying

P N
i =1 � 1;i +

P N s
i = N +1 � 2;i =

1. We de�ne the �nal objective functionf (�) as:

f (x; � 1; � 2) =
NX

i =1

� 1;i f 1;i (x) +
N sX

i = N +1

� 2;i f 2;i (x): (46)

We assume two pairs of parameters(� 1; � 2) and(� 0
1; � 0

2), where

� 1;i � � 0
1;i ; i 2 f 1; 2; :::; N g; (47)

� 2;i � � 0
2;i ; i 2 f N + 1 ; N + 2 ; :::; Nsg: (48)



Defining the optimal values of the objective function for different weighting parameters as

x̂ = argmax
x

f(x;�1;�2); (49)

x̂0 = argmax
x

f(x;�01;�
0
2); (50)

x� = argmax f(x;
1

N
;0): (51)

Under the following Assumptions (with 1 and 0 denoting vectors with all entries equal to 1 and 0,
respectively):

1. f(x̂;0;�2) � f(x̂0;0;�2).

2. f(x;�;0) � f(x0;�;0), iff kx� x�k � kx0 � x�k; � � 0; k�k1 = 1.

we have that

f(x̂;
1

N
;0) � f(x̂0; 1

N
;0): (52)

Proof. We start with proving the following equality by contradiction:

kx̂� x�k � kx̂0 � x�k: (53)

Specifically, if

kx̂� x�k > kx̂0 � x�k; (54)

leveraging the Assumption 1 and 2 above, we have that

f(x̂;�1;�2) = f(x̂;�1;0) + f(x̂;0;�2) < f(x̂0;�1;0) + f(x̂0;0;�2) = f(x̂0;�1;�2); (55)

which contradicts Eq. 49. Therefore, Eq. 53 holds.
Combining Eq. 53 and Assumption 2 above, we have that

f(x̂;
1

N
;0) � f(x̂0; 1

N
;0); (56)

concluding the proof.

Based on the definitions and lemmas above, we have the following theorems:

Theorem I.3 (Advantage of �A in the Simplified Case). With Definition I.1 and Definition I.3, com-
paring �I , �G, and �A by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(�; w ! GT), we have that

LGMM(�I ;w! GT) � LGMM(�A;w! GT) � LGMM(�G;w! GT): (57)

Proof. First, by definition one can easily find that �G achieves the largest L(�;w ! GT) among the
three:

max[LGMM (�I ; w !GT);LGMM (�A; w !GT)] � max
�
LGMM (�; w !GT) = LGMM (�G; w !GT): (58)

Next, we set fwigNi=1 to �1 and fwigN+Ns
i=N+1 to �2, respectively; we rewrite log

PK
k=1 �kN (ei;�k;�k)

as f1;i(x) for i 2 f1; 2; : : : ; Ng and f2;i(x) for i 2 fN + 1; N + 1; : : : ; N +Nsg, where x corresponds
to � , (�; f�k;�kgKk=1). By Lemma I.1, we have that

LGMM(�A;w! GT) � LGMM(�G;w! GT): (59)

Combining Eq. 58 and Eq. 59 concludes the proof.



Theorem I.3 shows that under mild assumptions, the attention-based weights can help produce better
estimates of � in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving interpretability of FLMs.

Theorem I.4 (Advantage of �A in the General Case). With Definition I.2 and Definition I.3, com-
paring �I , �G, and �A by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
LGMM (�; w ! GT), we have that

LGMM(�I ;w! GT) � LGMM(�A;w! GT) � LGMM(�G;w! GT): (60)

Proof. First, by definition one can easily find that �G achieves the largest L(�;w ! GT) among the
three:

max[LGMM(�I ; w !GT);LGMM(�A; w !GT)] � max
�
LGMM(�; w !GT) = LGMM(�G; w !GT): (61)

Next, we invoke Lemma I.2 by (1) setting fwigNi=1 to �1 and fwigN+Ns
i=N+1 to �2, respectively, and (2)

rewriting log
PK

k=1 �kN (ei;�k;�k) as f1;i(x) for i 2 f1; 2; : : : ; Ng and f2;i(x) for i 2 fN + 1; N +
1; : : : ; N +Nsg, where x corresponds to � , (�; f�k;�kgKk=1). By Lemma I.2, we then have that

LGMM(�A;w! GT) � LGMM(�G;w! GT): (62)

Note that because f1;i(�) and f2;i(�) are Gaussian, therefore Assumption 1 and 2 in Lemma I.2 hold
naturally under mild regularity conditions.

Combining Eq. 61 and Eq. 62 concludes the proof.

I.2 VALC as Interpreters
As mentioned in Eq. B , the ELBO of the marginal likelihood (denoting as � the collection of parameters
�; and f�k;�kgKk=1) is as follows:

LVALC(�; fwig) =
XL0

j=1
Eq [log p(emj jzmj ;�zmj

;�zmj
)]

=
X
m;j

wmj

X
k

�mjkf�
1

2
(emj � �k)

T
�
�1
k

(emj � �k)� log[(2�)
H=2j�kj

1=2
]g: (63)

Based on the definitions and lemmas above, we have the following theorems:

Theorem I.5 (Advantage of �A in the Simplified Case). With Definition I.1 and Definition I.3, com-
paring �I , �G, and �A by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
L(�; w ! GT), we have that

LVALC(�I ;w! GT) � LVALC(�A;w! GT) � LVALC(�G;w! GT): (64)

Proof. First, by definition one can easily find that �G achieves the largest L(�;w ! GT) among the
three:

max[LVALC(�I ; w !GT);LVALC(�A; w !GT)] � max
�
LVALC(�; w !GT) = LVALC(�G; w !GT): (65)

Next, we set [mfwmjgNmj=1 to �1 and [mfwmjg
Nm+Nm;s
j=Nm+1 to �2, respectively; we rewriteP

i �mjif�
1
2(emj ��i)

T��1
i (emj ��i)� log[(2�)d=2j�ij1=2]g as f1;j(x) for j 2 [mf1; 2; : : : ; Nmg

and f2;j(x) for j 2 [mfNm + 1; Nm + 1; : : : ; Nm + Nm;sg, where x corresponds to � ,
(�;; f�k;�kgKk=1). By Lemma I.1, we have that

LVALC(�A;w! GT) � LVALC(�G;w! GT): (66)

Combining Eq. 65 and Eq. 66 concludes the proof.

Theorem I.5 shows that under mild assumptions, the attention-based weights can help produce better
estimates of � in the presence of noisy stop-words and therefore learns higher-quality topics from the
corpus, improving and interpretability of FLMs.



Theorem I.6 (Advantage of �A in the General Case). With Definition I.2 and Definition I.3, com-
paring �I , �G, and �A by evaluating them on the marginal log-likelihood of non-stop-words, i.e.,
LV ALC(�; w ! GT), we have that

LVALC(�I ;w! GT) � LVALC(�A;w! GT) � LVALC(�G;w! GT): (67)

Proof. First, by definition one can easily find that �G achieves the largest L(�;w ! GT) among the
three:

max[LVALC(�I ; w !GT);LVALC(�A; w !GT)] � max
�
LVALC(�; w !GT) = LVALC(�G; w !GT): (68)

Next, we invoke Lemma I.2 by (1) setting [mfwmjgNmj=1 to �1 and [mfwmjg
Nm+Nm;s
j=Nm+1 to �2, respectively,

and (2) rewriting
P

i �mjif�
1
2(emj � �i)

T��1
i (emj � �i) � log[(2�)d=2j�ij1=2]g as f1;j(x) for j 2

[mf1; 2; : : : ; Nmg and f2;j(x) for j 2 [mfNm +1; Nm +1; : : : ; Nm +Nm;sg, where x corresponds to
� , (�;; f�k;�kgKk=1). By Lemma I.2, we then have that

LVALC(�A;w! GT) � LVALC(�G;w! GT): (69)

Note that because f1;j(�) and f2;j(�) are very close to Gaussian, therefore Assumption 1 and 2 in Lemma I.2
hold naturally under mild regularity conditions.

Combining Eq. 68 and Eq. 69 concludes the proof.
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