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Chapter 18

Deep Learning and the
Weather Forecasting
Problem - Precipitation
Nowcasting

18.1 Introduction

Precipitation nowcast refers to the forecasting of rainfall and other types of
precipitation up to 6 hours ahead (as defined by the World Meteorological
Organization). Since rainfall can be localized and highly-changeable, users
of precipitation nowcast typically demand to know the exact time, location
and intensity of rainfall. It is therefore necessary to make very high reso-
lution, both spatially and temporally, precipitation nowcast products in a
timely manner, typically in the order of minutes. The most important use
of precipitation nowcast is to support the operations of rainstorm warning
systems managed by meteorological services around the world. Rainstorm
warning systems provide early alerts to the public, disaster risk reduction
agencies, government departments in particular those related to public se-
curity and works, as well as managers of infrastructures and facilities. Upon
the issuance of rainstorm warnings, these parties take actions according to
their own standard operating procedures with a view to saving lives and
protecting properties. It has tremendous impact on various areas from avi-
ation service, public safety, to people’s daily life. For example, commercial
airlines rely on precipitation nowcasting to predict extreme weather events
and ensures flight safety. On land, heavy rainfall severely can affect the road
conditions and increases the risk of traffic accidents, which can be avoided
with the help of precipitation nowcasting. For local businesses, the number
of customers and their feedback about a restaurant are largely related to the
weather [7], especially the rain rate. Thus, accurate and timely prediction
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of rainfall helps restaurants predict and adjust their sales strategies. There-
fore, the past years have seen an ever-growing need for real-time, large-scale,
and fine-grained precipitation nowcasting [42, 43, 31, 31, 1]. Due to the in-
herent complexities of the atmosphere and relevant dynamical processes, the
problem imposes new challenge to the meteorological community [47].

Traditionally, precipitation nowcasting is approached by either Optical
Flow (OF) based methods [34, 39] or numerical methods [56, 47, 6]. OF
based methods first estimate the flow field, which represents the convective
motion of the precipitation, with the observed weather data (e.g., the Con-
stant Altitude Plan Position Indicator (CAPPI) radar echo maps [15]) and
then use the flow field for extrapolation [57]. The numerical methods build
mathematical models of the atmosphere on top of the physical principles
such as the dynamic and thermodynamic laws. Future rainfall intensities
are predicted by numerically solving partial differential equations within the
mathematical models. However, both approaches have deficiencies that limit
their success. The OF based methods attempt to identify the convective mo-
tion of the cloud, but they fail to represent cloud initiation or decay and lack
the ability of expressing strong nonlinear dynamics. In addition, the flow
field estimation step and the radar echo extrapolation step are separated,
making it challenging to determine the best model parameters. Numerical
methods can provide reliable forecast but require meticulous simulation of
the physical equations. The inference time of numerical models usually take
several hours and they are therefore not suitable for generating fine-grained
predictions required by precipitation nowcasting.

Recently, a new approach: Deep Learning for Precipitation Nowcasting
has emerged in the area and shown promising results. Shi et al. [42] first
formulated precipitation nowcasting as a spatiotemporal sequence forecast-
ing problem and proposed a DL based model, dubbed Convolutional Long
Short-Term Memory (ConvLSTM), to directly predict the future rainfall in-
tensities based on the past radar echo maps. The model is learned end-to-end
with a large amount of historical weather data and performs substantially
better than the OF based algorithm in the operational Short-range Warning
of Intense Rainstorms in Localized System (SWIRLS) developed by Hong
Kong Observatory (HKO) [34, 57]. After this seminal work, researchers
start to explore DL based methods for precipitation nowcasting and have
built models with state-of-the-art performance [18, 43, 37, 51, 31, 10, 1]. In
essence, precipitation nowcasting is well-suited for DL due to three reasons.
Firstly, the problem satisfies the big data requirement of DL. Numerous
amount of weather data are generated on a daily basis and can be used to
train the nowcasting model. For example, in National Oceanic and Atmo-
spheric Administration (NOAA), tens of terabytes of data are generated in
a single day [49]. Secondly, DL is suitable for modeling complex dynamical
systems [17]; a single-hidden-layer Multi-Layer Perceptron (MLP), which
is the most basic form of DL models, is a universal functional approxima-
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tor [13]. Thirdly, the inference speed of DL models is faster than numerical
methods [1]. Moreover, in the inference stage, we can dynamically update
the DL model with the newly observed data [43], making the model more
adaptive to the emerging weather patterns.

In this chapter, we introduce the current progress of DL based methods
for precipitation nowcasting. In Section 18.2, we describe how to mathe-
matically formulate precipitation nowcasting as a spatiotemporal sequence
forecasting problem. In Section 18.3, we review the high-level strategies for
constructing and learning DL models for precipitation nowcasting; because
precipitation nowcasting requires predicting rainfall intensities for multiple
timestamps ahead, we introduce various strategies to learn such a multi-step
forecasting model. In Section 18.4.1 and Section 18.4.2, we introduce the DL
models in two categories: Feed-forward Neural Network (FNN) based mod-
els, and Recurrent Neural Network (RNN) based models. In Section 18.5, we
describe the first systematic benchmark of the DL models for precipitation
nowcasting, the HKO-7 benchmark. We conclude this chapter and discuss
the potential future works along this area in Section 18.6.

18.2 Formulation

Precipitation nowcasting can be formulated as a spatiotemporal sequence
forecasting problem. Suppose that the meteorological system is defined over
an M x N grid, in which there are M rows and N columns. Within each
cell (7,7) of the grid, there are D measurements that vary over time. By
taking snapshots of the system at timestamps t1,%9,...,tp, we get a spa-
tiotemporal sequence that can be denoted as a sequence of tensors Xy,.1, =
[Xiy, Xtgs - -, Xep]. Here, X;, € RPXMXN g the observed meteorological
data at timestamp t;. In most DL models for precipitation nowcasting, the
meteorological observations X;s are 2D CAPPI radar echo maps [42, 43],
satellite images [31], or data from another Quantitative Precipitation Esti-
mation (QPE) product [1, 62]. Thus, in most cases, the grid is regular and
each pixel covers a region in the geographical map, e.g., a 1km x 1km local
area. Some works [18, 37] mainly explore the impact of multi-modal me-
teorological data without considering the spatial correlations. In this case,
M = N =1 and the spatiotemporal sequence forecasting problem degener-
ates to sequence forecasting problem, in which X;, degenerates to a vector
Ty € RP. In addition, in most scenarios, the time difference between two
consecutive snapshots, i.e. t;11 — t;, is always the same. Thus, we are able
to simplify the definition and denote X;, as X;.

The spatiotemporal sequence forecasting problem is to predict the most
likely length-L sequence in the future given the previous J observations
including the current one [42]. The mathematical definition is given in
equation 18.1, in which )~(t+1:t+ 1, are the predictions, X¢_j;1.+ are the ob-
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servations, and p(X¢t1:¢4+1 | X¢—s+1:¢) is the model. In the terminology of
precipitation nowcasting, the goal is to use the previously observed sequence
to predict short term rainfalls of a local region (e.g., Hong Kong, Shanghai,
New York, or Tokyo) in the future. In most nowcasting systems, radar echo
map is the mainstay of the meteorological observations due to its high spa-
tial and temporal resolutions. The radar maps are usually taken from the
weather radar every 6-10 minutes and predictions are given for the following
0-6 hours. If we record one radar frame every six minutes, the task is to
predict for 0-60 frames ahead:

Xeyti4r = argmax p(Xe e | Xeogi1:t)- (18.1)
X141

The spatiotemporal sequence forecasting problem is different from the
conventional multi-variate time series forecasting problem because the pre-
diction target of our problem is a sequence that contains both spatial and
temporal structures. Because the number of possible sequences grows ex-
ponentially with respect to both the spatial and temporal dimensionality,
we have to, in practice, exploit the structure of the spatiotemporal space to
reduce the dimensionality and hence make the problem tractable.

18.3 Learning Strategies

Precipitation nowcasting is intrinsically a multi-step forecasting problem.
Learning a model for multi-step forecasting is challenging because the ele-
ments in the predicted sequence )A(HLHL are not i.i.d.. Nevertheless, pre-
dicting the rainfall for multiple timestamps ahead is a crucial requirement
of precipitation nowcasting and DL based methods adopt different ways to
solve the issue. In this section, we introduce the learning strategies for
multi-step forecasting. We first explain and compare two basic strategies
called Iterative Multi-step Estimation (IME) and Direct Multi-step Estima-
tion (DME) [11] and then introduce one extension called Scheduled Sampling
(SS) that bridges the gap between IME and DME.

Iterative Multi-step Estimation The IME strategy trains a single-step
forecasting model and iteratively feeds the generated samples to the fore-
caster to get multi-step-ahead predictions. The IME model can either be
deterministic or probabilistic. Here, we denote the model as p(Xi+1 | X1.¢; 0)
to cover both cases, in which the deterministic model has a delta distribu-
tion. In the terminology of precipitation nowcasting, Xi.; is the sequence
of past weather data, X;y; is the rainfall intensity that the model will
predict at timestamp ¢ + 1, and 6 is the parameter of the model. To
train the model, we factorize the distribution p(Xit1.44r | Xe—gt1:) as
HZ.Lzlp(XtH | X¢—J+1:t+i—1;0). The optimal paramter * can be estimated
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by maximizing the likelihood:

L
0" = al“g;ﬂax Epiaa | D108 P(Xeti | Xe—sirieqio150) | - (18.2)

i=1

There are two advantages of the IME approach: 1) The objective func-
tion in equation 18.2 is easy to train because it only requires optimizing
for the one-step-ahead forecasting error and 2) we can predict for an ar-
bitrary horizons in the future by recursively applying the basic forecaster.
However, there is an intrinsic discrepancy between training and testing in
IME. In the training phase, we use the ground-truths from t+1tot+i—1
to predict the regional rainfall at timestamp ¢ 4 ¢, which is also known as
teacher-forcing [17]. While in the testing phase, we feed the model predic-
tions instead of the ground-truths back to the forecaster. This makes the
model prone to accumulative errors in the forecasting process [4]. Usually,
the optimal forecaster for timestamp t + ¢, which is obtained by maximiz-
ing Es,... log p(X¢yi | Xe—y41:4; 0)], is not the same as recursively applying
the optimal one-step-ahead forecaster when the model is nonlinear. This is
because the forecasting error at earlier timestamps will propagate to later
timestamps [35].

Direct Multi-step Estimation The main motivation behind DME is to
avoid the error drifting problem in IME by directly minimizing the long-term
prediction error. Instead of training a single model, DME trains a different
model p(X¢ti | Xi—yi1:4;0;) for each forecasting horizon i, in which 6; is
the parameter. There can thus be L models in the DME approach. The
set of optimal parameters {67, ...,07 } can be estimated from the following
optimization problem:

L
1se..,0] = argmaxEp, Zlogp(xtﬂ' | Xe—yt1:4:6:) (18.3)

01,...01 —

To disentangle the model size from the number of forecasting steps L,
we can also construct p(Xy; | Xi—ji+1.4;6;) by recursively applying the
single-step forecaster p(X¢+1 | Xi14;60). In this case, the model parame-
ters {01, ...,01} are shared. For example, when the single-step forecasting
model is deterministic and predicts )~(t+1 as m(Xy.; 0), we can obtain the
second step prediction by feeding in the predicted rainfall intensity, i.e.,
)~(t+2 = m (X, X, ..., X¢,m(X14;0);0). By repeating the process for L
times, we obtain the predictions )~(t+1;t+L. The optimal parameter 6* can
be estimated by minimizing the distance between the prediction and the
ground-truth, i.e., 8* = argming Eﬁdamd(xt-;-l:t-q—L, X¢41:4+1), in which d(-, -)
is a distance function. We need to emphasize here that the aforementioned
objective function directly optimizes the multi-step-ahead forecasting error
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and is different from equation 18.2, which only minimizes the one-step-ahead
forecasting error.

Scheduled Sampling According to [11], DME leads to more accurate
predictions when 1) the model is misspecified, 2) the sequences are non-
stationary, or 3) the training set is too small. However, DME is more com-
putationally expensive than IME. For DME, if the 0ys are not shared, we
need to store and train L models. If the 6,s are shared, we need to recur-
sively apply the basic forecasting model for O(L) steps [11, 4, 30]. Both cases
require larger memory storage or longer running time than solving the IME
objective. Overall, IME is easier to train but less accurate for multi-step
forecasting, while DME is more difficult to train but more accurate.

Schedules Sampling (SS) [4] tries to bridge the gap between IME and
DME. The idea of SS is to first train the model with IME and then gradually
replace the ground-truths in the objective function with samples generated
by the model itself. When all ground-truth samples are replaced with model-
generated samples, the training objective falls back into the DME objective.
The generation process of SS is described in equation 18.4:

V1<i<L,

Xiri ~ p(Kewi | X1y Xesteeri1;0), (18.4)

Xevi = (1= 7o) Xegi + TeiXesis
Te+i ~ Binomial(1, ).

Here, Xt+z and Xt+z are correspondingly the generated sample and the
ground-truth at timestamp ¢t + i. p(Xy4; | X, Jat:t, Xert4eio1;0) is the
basic single-step forecasting model. Meanwhile, 7y, is generated from a
binomial distribution and controls whether to use the ground-truth or the
generated sample. ¢ is the probability of choosing the ground-truth at the
kth iteration. In the training phase, SS minimizes the distance between
xt+1 4+ and Xt+1 4+L- In the testing phase, 7.y;s are fixed to 0, meaning
that the model-generated samples are always used.

SS lies in the mid-ground between IME and DME. If ¢ equals to 1, the
ground-truths are always chosen, and the objective function will be the same
as in the IME strategy. If ¢, is 0, the generated samples are always chosen,
and the optimization objective will be the same as in the DME strategy. In
practice [4, 53], € is gradually decayed during the training phase to make
the optimization objective shift smoothly from IME to DME, which is a
type of curriculum learning [5].

When applied for precipitation nowcasting, existing DL models adopt
either of these three learning strategies. We will introduce the detailed ar-
chitectures of these two types of models in Section 18.4.1 and Section 18.4.2
and give an overview of the learning strategy that each model uses in Sec-
tion 18.6.
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18.4 Models

18.4.1 FNN-based Models

FNN refers to deep learning models that construct the mapping Y = f(X;0)
by stacking various basic blocks such as the Fully-Connected (FC) layer, the
convolution layer, the deconvolution layer, and the activation layer. Com-
mon types of FNNs include Multilayer Perceptron (MLP) [41, 17], which
stacks multiple FC layers and nonlinear activations and Convolutional Neu-
ral Network (CNN) [29], which stacks multiple convolution layers, pooling
layers, deconvolution layers, FC layers, activation layers, normalization lay-
ers [23, 58] and other transformations. The parameters of FNN are usually
estimated by minimizing the loss function plus some regularization terms,
ie., 0* = argming E; . [I(Y, f(X;0))] + Q(0) where [(-,-) is the loss func-
tion and €(-) is the regularization function such as the Lo or L; loss [17].
Usually, the optimization problem is solved via stochastic-gradient-based
methods [17], in which the gradient is computed by backpropagation [36].

The convolution layer takes advantage of the translational invariance
property of image data. The convolution layer computes the output by scan-
ning over the input and applying the same set of linear filters. Although the
input can have an arbitrary dimensionality [50], we mainly focus on 2D con-
volution, since for precipitation nowcasting, the convolution layer is mainly
used for extracting the spatial correlation in meteorological images. For in-
put X € REXHixWi the output of the convolution layer H € RCoxHoxWo
which is also known as feature map. Ayzel et al. [2] proposed DozhdyaNet
for precipitation nowcasting. DozhdyaNet consists of only convolution lay-
ers and is a type of all convolutional network [44]. The input of the model is
a sequence of radar images X;_j41¢. To facilitate the 2D convolution layer
to deal with the sequence of 3D tensors, the author concatenates all frames
along the temporal dimension and treats them as different channels:

Xin = concat(Xi—ji1, Xe—gi2, .- X¢t), (18.5)

where X;, € RE*HixWi ig the network input and the number of channels

C! is the product of the number of observations within each local grid and
the input sequence length, i.e., C/ = C; x J. Notice that in this manner,
the channel C/ is determined by the input length, hence unlike the RNN-
based models, which will be explained in detail in Section 18.4.2, the input
length must be fixed for the FNN-base models. The radar image at the next
timestamp X;11 is predicted by feeding the preprocessed input sequence X;j,
into the FNN: X411 = f(Xin;0). Also, to predict for multiple steps ahead,
the author adopted the IME strategy by feeding the predicted radar image
back to the network in the inference phase. Also, the author compared
different transformation techniques for preprocessing the 2D radar images
and used two radar images taken with the 5min interval as the input to
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Figure 18.1: (a) The overall structure of the U-NET in [1]. Solid lines
indicate input connections between layers. Dashed lines indicate skip con-
nections. (b) The operations within the basic layer. (c) The operations
within our down-sample layers. (d) The operations within the up-sample
layers.

predict the next radar image.

Agrawal et al. [1] also concatenates the input images in the tempo-
ral dimension and used the U-Net [40] architecture for prediction. U-Net
combines down-sampling, up-sampling and skip connections to learn bet-
ter hidden representations. Fig. 18.1 illustrates how these building blocks
are organized. The iterative down-sampling part extracts more global and
more abstract representations and the up-sampling part gradually refines
the representation and adds the finer details to the generated output. The
skip connection helps preserve high-resolution details and facilitates gradi-
ent backpropagation. The author used QPE data from the Multi-Radar
Multi-Sensor (MRMS) system [62] for training and testing the model. The
input is a sequence of radar images taken with 2min interval for one hour
and the output is the sequence of radar images for the next several hours.
Experiments show that the U-Net based DL model outperforms OF based
model and the HRRR model by NOAA [6].

Klein et al. [28] designed the dynamic convolution layer to replace the
conventional convolution layer. Instead of using a data-independent filter,
the dynamic convolution layer generates both the feature maps and the fil-
ters from the input and convolves the filters with the feature maps to get the
output. The feature maps and the filters are obtained from the input with
two sub-networks. Because the filters are depend on the input, they will
vary from one sample to another in the testing phase. The author concate-
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Figure 18.2: The dynamic convolutional layer. The input is fed into two sub-
networks. The features are the result of sub-network A while the convolution
filters are obtained from sub-network B. The final output of the dynamic
convolution layer is computed by convolving the filters from sub-network B
across the features from sub-network A.

nates four radar images as the input to predict the next radar image. Also,
the author proposed a patch-by-patch synthesis technique which predicts a
10 x 10 patch in the output from a sequence of 70 x 70 patches in the input.
Fig. 18.2 illustrates the workflow of the dynamic convolution layer. Notice
that this layer is different from the dynamic filter [25] layer that is introduce
in Section 18.4.2. In dynamic convolution layer, the filter is shared for all
locations in the input, while they are adaptively selected in the dynamic
filter layer.

Besides the radar images, satellite images are also commonly used as
input in FNN-based models. In [31], satellite images and the observations
from Global Forecast System (GFS) [9] are combined and used as the input.
These two types of data are in different modalities and are misaligned with
regard to spatial and temporal resolution. Thus, the author remapped them
into the same spatial and temporal grid by interpolation. Lebedev et al. [31]
also applied the U-Net architecture.

Similar to [31], Herndndez et al. [18] and Qiu et al. [37] also deals with
meteorological data from multiple modalities, including temperature, hu-
midity, wind speed, barometric pressure, Dew point, etc. However, they do
not consider the spatial dimension of these data. FNNs with 1D convolution
layers and FC layers are built for the 1x D input data. The weather nowcast-
ing problem is formulated as learning a deterministic mapping Y; 41 = f(X})
that maps the current meteorological observation X; to the precipitation at
next step Y;11. Since the formulation has not fully utilized the spatiotem-
poral structure of the data, we will not go into the details here.

18.4.2 RNN-based Models

As mentioned in Section 18.2, precipitation nowcasting can be formulated
as a spatiotemporal sequence forecasting problem with the sequence of past
radar maps as input and the sequence of future radar maps as output. In
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the advancement of DL, RNN-based architectures, such as Gated Recurrent
Unit (GRU) [12] and LSTM [19], are proven to be effective for modeling se-
quential data [48, 26, 38, 45, 59]. Different from FNN-based models, which
are designed for modeling inputs with static shapes, RNN-based models
are designed for modeling dynamic systems. In this section, we introduce
the RNN-based models for precipitation nowcasting. We first introduce the
encoder-forecaster structure which is the common approach for constructing
RNN-based models for spatiotemporal sequence forecasting. Then we intro-
duce the Convolutional LSTM (ConvLSTM) network [42], which combines
the advantage of CNN and RNN and is the first DL-based model for pre-
cipitation nowcasting. After that, we introduce other RNN-based models
like the ConvLSTM with star-shaped bridge [8, 10|, Predictive RNN (Pre-
dRNN) [52], Memory In Memory (MIM) Network [53], and the Trajectory
GRU (TrajGRU) [43], which improves upon ConvLSTM from different di-
rections.

18.4.3 Encoder-Forecaster Structure

The Encoder-Forecaster (EF) structure [45, 42] is a widely-used neural net-
work architecture for sequence forecasting. It first encodes the observations
into a state with an encoder. The state can be a single vector, multiple
vectors, or other mathematical objects. Based on the state, it generates the
predictions with a forecaster. Following the same notation as in Section 18.2,
we can formulate the EF structure as follows:

H=f(Xi_gi1.:01), Xivrer = g(H;0y). (18.6)

Here, f(-;0) is the encoder parameterized by 61, g(-;602) is the forecaster
parameterized by 02, X;41.441 are the predictions.

18.4.4 Convolutional LSTM

In the DL community, Fully-Connected LSTM (FC-LSTM) is a type of
RNN with gates and memory cells for dealing with the vanishing gradient
problem [17]. The formula of FC-LSTM is given as follows:

iy = o(Wyixy + Whiihi_1 + we; © ¢i—1 + b;),
fi =o(Wypxy + Wiyrhi 1 + wep © ci—1 + by),
¢t =i ©ci—1 + 1 © T (Woyexy + Wichi—1 + be), (18.7)
oy = oc(Wyoxy + Wiohy—1 + weo © ¢t + by),
h: = 0: © 15(cyt),
in which 4, fi, o; are correspondingly the input gate, forget gate, and output

gate. The ¢;_1, ¢; are the memory cells. 7 () and 7,(-) are the activations,
e.g., the ‘tanh’ function. x;s and h;s are input vectors and the hidden states.
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Figure 18.3: Inner structure of ConvLSTM. Source: [42].
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However, FC-LSTM is not suitable for precipitation nowcasting in which
the input and output are spatiotemporal sequences. The major drawback of
FC-LSTM in handling spatiotemporal data is its usage of full-connections
in input-state and state-state transitions that loses the spatial structure.

To overcome the problem of FC-LSTM, ConvLSTM [42] extends FC-
LSTM by having convolutional structures in both the input-state and state-
state transitions. The key equations of ConvLLSTM is given in equation 18.8.
A distinguishing feature of the design is that all the inputs X;s, cell states
C;s, hidden states Hys, and gates l;, F;, O; of the ConvLSTM are 3D tensors
whose last two dimensions are spatial dimensions (rows and columns). To
get a better picture of the inputs and states, we may imagine them as vectors
standing on a spatial grid. The ConvLSTM determines the future state of
a certain cell in the grid by the inputs and past states of its local neighbors.
Fig. 18.3 illustrates the connection structure of ConvLL.STM.

i = (Wi X + Wy xHi g + W © Ciq + by)
Fi=0(Wyp*«Xi+WppsxHiog +Wep ©Ciq + by)
C.=F,0C_1+ 107 (WgexX; +Wpex Hi1 + b,) (18.8)
Oy = 0(Wyo Xy +Wpp x Hi 1 + W, © C; + by)

H; = 0; ©® 7,(Cy)

In order to ensure that each state has the same number of rows and
columns, the author uses zero-padding in the convolution operator and views
it as initializing the state of the outside world to be all zero. Also, the
traditional FC-LSTM can be viewed as a special case of ConvLSTM with
all features standing on a single cell.

The author adopts ConvLLSTM as the building block for the EF archi-
tecture. The initial states and cell outputs of the forecasting network are
copied from the last state of the encoding network. Both encoder and fore-
caster are formed by stacking several ConvLSTM layers. All states in the
forecasting network are concatenated and fed into a 1 x 1 convolutional layer
to generate the final prediction.

The nowcasting model based on ConvLSTM is compared with the OF-
based ROVER [57] algorithm operated in HKO and the FC-LSTM based
model on a 97-day radar echo data in Hong Kong. Experiments show that
ConvLLSTM outperforms both two baselines. Also, the results showed that
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Figure 18.4: Connection structure of the star-shaped bridge.

setting the kernel size of the state-state convolution to be larger than 1 is
essential for the final performance.

18.4.5 ConvLSTM with Star-shaped Bridge

To make the feature flow in multi-layer ConvLSTM more robust, Cao et
al. [8] proposed the connection structure called star-shaped bridge. In this
structure, the states of all ConvLSTM layers at timestamp ¢ are concate-
nated and passed to a convolution layer with kernel size 1 x 1 to obtain a
global state. The global state has residual connections to all ConvLSTM
states at timestamp ¢ 4+ 1. The detailed structure is shown in Figure 18.4.
Apart from the star-shaped bridge, the author also inserts Group Nor-
malization (GN) [58] between ConvLSTM layers. Ablation study shows
that the best performance is obtained by combining ConvLSTM, star-shaped
bridge, and GN. Also, experiments on 4-year radar echo data from Shanghai,

China showed that the learning-based model outperforms the conventional
COTREC method [10].

18.4.6 Predictive RNN

With memory cells being updated every time step inside the ConvLSTM
block, the encoder-forecaster architecture is able to model the underlying
temporal dynamics. However, the memory cells across different layers lack
mutual communication, which are hence not powerful enough for capturing
and memorizing spatial correlations. If we directly stack multiple ConvL-
STM layers, the information goes only upwards and makes the features more
and more abstract. However, since the network needs to predict a spatiotem-
poral sequence with fine details, information from the lower-level features,
including the raw inputs, should be maintained. To solve the issue, Wang et
al. [52] proposed Spatiotemporal LSTM (ST-LSTM) which keeps an extra
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Figure 18.5: Connection structure of PredRNN. The orange arrows in Pre-
dRNN denote the flow of the spatiotemporal memory Mi.

memory cell Mi to enhance the memory capacity. The external memory
is updated in a zigzag direction illustrated in Figure 18.5 and the author
named the whole multi-layer architecture as Predictive RNN (PredRNN).
The updating rule of ST-LSTM is formulated as follows:

i = 0(Wai % X; + Wi« Hi_; +b;),

Fo = 0(Way* X + Wy« Hi | +by),

CL=F,®C., + 1, ®tanh(W, * X; + W+ HL_| +b,),

I} = o (Wh; # X + Wi 5 M1 4 ),

| = (W, Xy 4+ Wy ML 4 B,
M. = F, © M1 4 1, © tanh (W, * Xi 4+ W, « MY 4 b,,,),
0; = 0(Wap % Xy + Wi % HL_j + We, © € + Wiy © MY+ b,),
H; = 0; ® tanh(W1 4 * [C}, MY]).

(18.9)

Here, I, Fs, Hy, O; have the same meaning as in equation 18.8. Ci means
the cell state at layer [ at timestamp ¢, and Mi means the external memory
cell that will be updated in a zigzag order. For the bottom ST-LSTM with
I =1, the memory cell from the previous layer is defined as Mi_l = MtL_l,
which results in a zigzag update flow. Experiments show that PredRNN
outperforms the ConvLSTM structure in precipitation nowcasting. The ex-
periment is conducted on a dataset with 10,000 consecutive radar observa-
tions recorded every 6 minutes in Guangzhou, China. 10 frames are used as
the input to predict the future 10 frames.
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Figure 18.6: ST-LSTM block (up) and Memory In Memory block (bottom).
For brevity, G; = tanh(W . * X; +Wj. * HL_| +b,), G, = tanh(W_,, * X; +
Wy, * Mi_l + b,,). MIM is designed to introduce two recurrent modules
(vellow squares) to replace the forget gate (dashed box) in ST-LSTM. MIM-
N is the non-stationary module and MIM-S is the stationary module.

18.4.7 Memory In Memory Network

Temporal dynamics of spatiotemporal processes are usually non-stationary.
Most RNN-based models approximate the non-stationary dynamics in a
stationary manner. To learn a better representation of the underlying high-
order non-stationary structure, Memory In Memory (MIM) [53] extends
the ST-LSTM by replacing the forget gate with another two embedded
long short-term memories. It leverages the differential information between
neighboring hidden states in the recurrent paths, and can gradually station-
arize the spatiotemporal process by stacking multiple MIM blocks.

As shown in Figure 18.6, two cascaded temporal memory recurrent mod-
ules are designed to replace the temporal forget gate F; in ST-LSTM. The
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MIM-N MIM-S
(Non-stationary) (Stationary)

Figure 18.7: The non-stationary module (MIM-N) and the stationary mod-
ule (MIM-S), which are interlinked in a cascaded structure in the MIM block.
Non-stationarity is modeled by differencing.

first module additionally taking Hij as input is used to capture the non-

stationary variations based on the difference Hi_l — Hij between two con-
secutive hidden representations. Thus, it is named as the non-stationary
module (shown as MIM-N in Figure 18.7). It generates differential fea-
tures D! based on the difference-stationary assumption. The other recurrent
module takes the output D! of the MIM-N module and the outer temporal
memory Cé_l as inputs to capture the approximately stationary variations
in spatiotemporal sequences. Thus, it is named as the stationary module
(shown as MIM-S in Figure 18.7). By replacing the forget gate with the
final output Ti of the cascaded non-stationary and stationary modules, the
non-stationary dynamics can be captured more effectively. The complete
formula of MIM is given as follows:

I = o(Wy * X + Wy s HL_, + b)),
Fi=0(Wop X, + Wy HL_ | +by),
D} = MIM-N(H; ™', HiZ}, Nj_y),
T, = MIM-S(D}, C;_;,S}_1),
CL=F, 0T, 41, ®tanh (W, * Xy + W, x H. | +b,),
I} = o(W,; % X; + Wi « ML 4 bl
Fi = 0(W,f % X¢ + Wop s M1+ b)),
M! = F, @ ML 4 1, © tanh (W, % Xi + Wiy, « MU 10b,,),
0 = (W s H 4+ Wy s HL) + W © € + W, © MY 4 b,),
H, = 0, ® tanh(W,; * [C}, M}]),

(18.10)
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Figure 18.8: Encoder-forecaster architecture adopted in [43]. Source: [43].

where S and N denote the horizontally-transited memory cells in the non-
stationary module (MIM-N) and stationary module (MIM-S) respectively;
Dis are the differential features learned by MIM-N; Ti is the memory passing
the virtual “forget gate”. MIM-N is a ConvLSTM with Hifl — Hij as the
hidden state input. MIM-S is a ConvLSTM with D! as the hidden state
input. The detailed formula are omitted here and readers can refer to [53]
for more details.

18.4.8 Trajectory GRU

Shi et al. [43] proposed a U-Net-like modification to the EF architecture.
As Figure 18.8 illustrates, the order of the forecaster network is reversed
comparing to that in [42]. There are downsampling and upsampling layers
between the RNNs, which are implemented by strided convolution and de-
convolution. In this structure, the encoder adopts a local-to-global feature
extraction process while the decoder adopts a coarse-to-fine generation pro-
cess. There are “skip-connections” between the encoder and the forecaster
to preserve the details from the raw inputs.

Along with the new EF structure, Shi et al. [43] also pointed out a side-
effect of the convolution operation in ConvLSTM. In essence, the location-
invariant convolution filters are inefficient to capture location-variant spa-
tiotemporal relationship. To overcome this problem, Shi et al. [43] proposed
the Trajectory GRU (TrajGRU) model which uses a sub-network to output
the state-state connection structures before state transitions. TrajGRU ex-
tends upon Convolutional GRU (ConvGRU), which is a variant of ConvL-
STM, and allows the state to be aggregated along some learned trajectories.
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The formula of ConvGRU is given as follows:

Z, =0(Wy, «+ X¢ + W, s Hi 1 + b,),

R; = 0(Wy, x Xy + Wy, x H—1 + b,.),

H; = f(Wgyp * Xy + R © (W, x Hi_y + by)),
Hi=(1-2Z,)oH,+Z; ©H;_;.

(18.11)

Here, Hy, Ry, Z;, H} € REOXHXW are the memory state, reset gate, update
gate, and new information, respectively.

As stated in [43], when used for capturing spatiotemporal correlations,
the deficiency of ConvGRU and ConvLSTM is that the connection struc-
ture and weights are fixed for all the locations. The convolution operation
basically applies a location-invariant filter to the input. If the inputs are all
zero and the reset gates are all one, the author pointed out that the calcu-
lation process of H} at a specific location (i, j), i.e, H;’:ﬂ»’j, can be rewritten
as follows:

WYl
H/t,:,i,j = f( Z WfthHtfl,:,p(l,i,j),q(l,i,j))7 (1812)
=1
in which th is the ordered neighborhood set at location (i, j) defined by
the hyper-parameters of the state-state convolution such as kernel size, di-
lation and padding [61]. (p(l,4,7),q(l,7,7)) is the [th neighborhood location
corresponding to position (i, 7).

Based on this observation, TrajGRU uses the current input and previous
state to generate the local neighborhood set for each location at each times-
tamp. The detailed formula is given in equation 18.13. Here, L is the number
of allowed links. U;,V; € REXHXW are the flow fields that store the local
connection structure generated by v(X¢, Hi_1). The W, _ W! W!, are the
weights for projecting the channels and were chosen as 1 X 1 convolutions in
the paper. The warp(H;—1, Uy, V) function selects the positions pointed
out by Uy, Vy; from Hy_; via the bilinear sampling kernel [24, 21, 43].

Ui, Vi = v(Xe, Himp),

L
Z, = 0(Wy, * X; + Z Wi, « warp(Hy—1, Up s, Vi),
1=1
L
R; = U(er * X¢ + Z Wiw * WaTP(Ht—b Ut,la Vt,l))7 (1813)

=1

L

H, = f(Wop * X¢ + Ry © (3 Wiy, # warp(Hy_1, Uy, Vi),
=1

Hi=(1-2Z,)oH,+Z; ©H;_;.
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(a) For convolutional RNN, the (b) For trajectory RNN, the re-
recurrent connections are fixed current connections are dynami-
over time. cally determined.

Figure 18.9: Comparison of the connection structures of convolutional RNN
and trajectory RNN. Links with the same color share the same transition
weights. (Best viewed in color). Source of figure: [43].

The advantage of such a structure is that it could learn the connection
topology by learning the parameters of the subnetwork . ~ has only a
small number of parameters and thus adds nearly no cost to the overall
computation. Compared to a ConvGRU with K x K state-state convolution,
TrajGRU is able to learn a more efficient connection structure with L < K?2.
For ConvGRU and TrajGRU, the number of model parameters is dominated
by the size of the state-state weights, which is O(L x C?) for TrajGRU and
O(K? x C}) for ConvGRU. If L is chosen to be smaller than K2, the number
of parameters of TrajGRU can also be smaller than the ConvGRU and the
TrajGRU model is able to use the parameters more efficiently. Illustration
of the recurrent connection structures of ConvGRU and TrajGRU is given
in Figure 18.9.

Experiments in the paper showed that TrajGRU outperforms ConvGRU,
2D CNN, 3D CNN, and the ROVER algorithm in precipitation nowcasting.

18.5 Benchmark

Despite the rapid development of DL models in solving this problem, the
way to evaluate the models has some deficiencies. Firstly, the deep learning
models are only evaluated on relatively small dataset containing limited data
frames. Secondly, different models report evaluation results on different cri-
terias. As the needs of real-world precipitation nowcasting system diverge
from indicating raining or not to rainstorms alert, single criterion is not suf-
ficient for demonstrating the algorithm’s overall performance. Thirdly, in
the real-world scenario, the meteorological data arrive in a stream and the
nowcasting algorithm should be able to actively adapt to the new-coming
sequences. Considering this online setting is not less important than con-
sidering offline setting with fixed-length input. In fact, as the area deep
learning for precipitation nowcasting is still in its early stages, it is not clear
how models should be evaluated to meet the needs of real-world applications.

Shi et al. [43] proposed the large-scale HKO-7 benchmark for precipi-
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tation nowcasting to address this problem. HKO-7 benchmark is built on
the HKO-7 dataset containing radar echo data from 2009 to 2015 near Hong
Kong. Since the radar echo maps arrive in a stream in the real-world sce-
nario, the nowcasting algorithms can adopt online learning to adapt to the
newly emerging patterns dynamically. To take this setting into account,
there are two testing protocols in this benchmark: the offline setting in
which the algorithm can only use a fixed window of the previous radar echo
maps and the online setting in which the algorithm is free to use all the
historical data and any online learning algorithm. Another issue for the
precipitation nowcasting task is that the proportions of rainfall events at
different rain-rate thresholds are highly imbalanced. Heavier rainfall occurs
less often but has a higher real-world impact. Balanced Mean Squared Error
(B-MSE) and Balanced Mean Absolute Error (B-MAE) measures are thus
introduced for training and evaluation, which assign more weights to heav-
ier rainfalls in the calculation of MSE and MAE. Empirical study showed
that the balanced variants of the loss functions are more consistent with the
overall nowcasting performance at multiple rain-rate thresholds than the
original loss functions. Moreover, training with the balanced loss functions
is essential for deep learning models to achieve good performance at higher
rain-rate thresholds.

Using the new dataset, testing protocols, and training loss, there are
seven models being extensively evaluated, including a simple baseline model
which always predicts the last frame, two OF based models (ROVER and its
nonlinear variant), and four representative deep learning models (TrajGRU,
ConvGRU, 2D CNN, and 3D CNN). This large-scale benchmark for pre-
cipitation nowcasting is the first comprehensive benchmark of deep learning
models for the precipitation nowcasting problem.

18.5.1 HKO-7 Dataset

The HKO-7 dataset used in the benchmark contains radar echo data from
2009 to 2015 collected by HKO. The radar CAPPI reflectivity images, which
have resolution of 480 x 480 pixels, are taken from an altitude of 2km and
cover a 512km x 512km area centered in Hong Kong. The data are recorded
every 6 minutes and hence there are 240 frames per day. The raw logarithmic
radar reflectivity factors are linearly transformed to pixel values via pixel =
| 255 X % + 0.5] and are clipped to be between 0 and 255. The radar
reflectivity values are converted to rainfall intensity values (mm/h) using the
7Z-R relationship: dBZ = 10loga + 10blog R where R is the rain-rate level,
a = 58.53 and b = 1.56. As rainfall events occur sparsely, the rainy days
are selected based on the rain barrel information to form the final dataset,
which has 812 days for training, 50 days for validation and 131 days for
testing.

The raw radar echo images generated by Doppler weather radar are noisy
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due to factors like ground clutter, sea clutter, anomalous propagation and
electromagnetic interference [33]. To alleviate the impact of noise in training
and evaluation, Noisy pixels are filtered out by generating the noise masks
with a two-stage process.

18.5.2 Evaluation Methodology

As the radar echo maps arrive in a stream, nowcasting algorithms can apply
online learning to adapt to the newly emerging spatiotemporal patterns. The
evaluation protocol of HKO-7 benchmark consists of two settings: (1) the
offline setting in which the algorithm always receives 5 frames as input and
predicts 20 frames ahead, and (2) the online setting in which the algorithm
receives segments of length 5 sequentially and predicts 20 frames ahead for
each new segment received. The testing environment guarantees that the
same set of sequences is tested in both the offline and online settings for fair
comparison.

For both settings, models are evaluated according to the skill scores
for multiple thresholds that correspond to different rainfall levels to give
an all-round evaluation of the algorithms’ nowcasting performance. Ta-
ble 18.1 shows the distribution of different rainfall levels in HKO-7 dataset.
The thresholds 0.5, 2, 5, 10, 30 are selected to calculate the CSI and
Heidke Skill Score (HSS) [20]. For calculating the skill score at a spe-
cific threshold 7, which is 0.5, 2, 5, 10 or 30, the pixel values in pre-
diction and ground-truth are first converted to 0/1 by thresholding with
7. Then calculate the TP (prediction=1, truth=1), FN (prediction=0,
truth=1), FP (prediction=1, truth=0), and TN (prediction=0, truth=0).

The CSI score is calculated as % and the HSS score is calculated

as TPxTN—FNxFP
(TP+FN)(FN+TN)+(TP+FP)(FP+TN
noisy points are ignored.

As shown in Table 18.1, the frequencies of different rainfall levels are
highly imbalanced. Using weighted loss function helps solve this prob-
lem. Specifically, a weight w(x) is assigned to each pixel according to

4

- During the computation, the masked

1, <2
2, 2<x<5b
its rainfall intensity z: w(x) = {5, 5<xz <10 . Also, the masked
10, 10< 2 <30
30, x> 30

\

pixels have weight 0. The resulting B-MSE and B-MAE scores are com-
puted as B-MSE = % 25:1 Zg{i ;1201 Wni (T — inyi,j)z and B-MAE =
% 25:1 Zﬁq jfiol Wnij|Tnij — Tnij|, where N is the total number of
frames and wy, ; ; is the weight corresponding to the (4, j)th pixel in the nth
frame. For the conventional MSE and MAE measures, all the weights are
simply set to 1 except the masked points.
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Table 18.1: Rain rate statistics in the HKO-7 benchmark. Source: [43].

Rain Rate (mm/h) Proportion (%) Rainfall Level

0< z <05 90.25 No / Hardly noticeable
05< = <2 4.38 Light

2< z <5H 2.46 Light to moderate

5 < x <10 1.35 Moderate
100< = <30 1.14 Moderate to heavy
30< 0.42 Rainstorm warning

18.5.3 Evaluated Algorithms

There are seven nowcasting algorithms for evaluation in HKO-7 benchmark,
including the simplest model which always predicts the last frame, two op-
tical flow based methods (ROVER and its nonlinear variant), and four deep
learning methods (TrajGRU, ConvGRU, 2D CNN, and 3D CNN). Specifi-
cally in the online setting, models are fine-tuned using AdaGrad [16] with
learning rate equal to 1074, The training objective during offline training
and online fine-tuning is the sum of B-MSE and B-MAE. During the offline
training process, all models are optimized by the Adam optimizer with learn-
ing rate equal to 10~* and momentum equal to 0.5, with early-stopping on
the sum of B-MSE and B-MAE. The ConvGRU model is also trained with
the original MSE and MAE loss, which is named “ConvGRU-nobal” in the
paper [43], to evaluate the improvement by training with the B-MSE and
B-MAE loss.

18.5.4 Evaluation Results

The experiment results show that training with balanced loss functions is
essential for good nowcasting performance of heavier rainfall. The ConvGRU
model that is trained without balanced loss, which best represents the model
in [42], has a worse nowcasting score than the optical flow based methods at
the 10mm/h and 30mm /h thresholds. Also, all the deep learning models that
are trained with the balanced loss outperform the optical flow based models.
Among the deep learning models, TrajGRU performs the best and 3D CNN
outperforms 2D CNN, which shows that an appropriate network structure
is crucial to achieving good performance. The improvement of TrajGRU
over the other models is statistically significant because the differences in
B-MSE and B-MAE are larger than three times their standard deviation.
Moreover, the performance with online fine-tuning is consistently better than
that without online fine-tuning, which verifies the effectiveness of online
learning at least for this task.

The results of the Kendall’s 7 coefficients [27] between the MSE, MAE,
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B-MSE, B-MAE and the CSI, HSS at different thresholds show that B-MSE
and B-MAE have stronger correlations with the CSI and HSS in most cases.

18.6 Discussion

In this chapter, we reviewed the DL based methods for precipitation now-
casting. The architecture, building block, training objective function, met-
rics, and data source of the reviewed methods are summarized in Table 18.2.
Precipitation nowcasting is formulated as a spatiotemporal sequence fore-
casting problem from the machine learning perspective. Thanks to the in-
creased computational power and the amounts of data, the area is making
rapid progress. Machine learning, specifically deep learning, facilitates the
large amount of weather data and provides promising research directions
for better modeling and understanding of precipitation nowcasting problem.
Despite the success of DL based methods achieved on precipitation now-
casting, this problem is still challenging. Below we list several major future
research directions that are not solved or have not been explored:

e Utilization of multi-source meteorological data
While existing DL based models mainly focus on single-source data,
typically radar echo maps or satellite images, multi-source meteorolog-
ical data have become avaiblable thanks to rapidly developing sensing
techniques as well as increasing data storage. Although DL based mod-
els extract spatiotemporal features effectively, precipitation nowcast-
ing using only single-source data is essentially ill-posed. The models
are not offered complete knowledge on the dynamics of the meteoro-
logical system, hence fail to accurately model it and infer its future
evolution. Multi-source data, in contrast, provide multi-modal and
multi-scale meteorological information, giving the model a more holis-
tic view of the system. Therefore exploring DL models that are able
to jointly process complementary multi-source data can certainly help
learn better representations of the observing systems.

e Handling uncertainty
Precipitation nowcasting involves complex physics dynamics. Accord-
ing to chaos theory, chaotic behaviors in a meteorological system make
it unpredictable due to high degree of uncertainty. Learning to capture
the internal uncertainty is one of the major challenge in modeling and
understanding the latent dynamics. However, most DL models address
precipitation nowcasting in deterministic manner, which averages all
possible futures into a single output, without describing its whole dis-
tribution. For some application scenarios such as rainstorm alert, not
only the average and the most likely futures are concerned, but also
some possible extreme cases should be considered. There are some
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recent works [60, 3, 14, 32] that developed stochastic spatiotemporal
models to predict different possible futures through variational infer-
ence. Though stochastic spatiotemporal models are not yet evaluated
on precipitation nowcasting tasks, they are inspiring can be potential
solutions for handling uncertainty in precipitation nowcasting.

e Integration with numerical methods

Compared with theory-driven quantitative precipitation forecast (QPF)
methods with clear physical meanings, deep learning models are data-
driven and typically suffer from poor interpretability. Although theory-
driven precipitation nowcasting models are derived from physical the-
ories, they are essentially phenomenological models built by summa-
rizing the empirical relationship of observations instead of deriving
from first principles, which means theory-driven models are not en-
tirely different from but in essence analogous to data-driven models.
Theory-driven models consist of interpretable components to describe
the observed data, while keeping consistent with physical laws includ-
ing conservation of mass, momentum, energy, etc. They are deter-
mined by human experts and are hence hard to adjust according to dif-
ferent data from different distributions. On the contrary, data-driven
models are equipped with high flexibility to adapt to different datasets
since they directly learn parameters from data under few constraints.
These two approaches are complementary in respect of interpretability
and flexibility. Integrating theory-driven and data-driven approaches
provides new opportunities in future precipitation nowcasting research,
including but not limited to model calibration, recognizing unidentified
observations, etc.
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