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Perception and Inference

ASee (visual object recognition)
ARead (text understanding)
Adear (speech recognition)

Comprehensivél

AThink (inference and reasoning)



Bayesian Deep Learning (BDL)
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Perception & Inference/reasoning @® Deep learning
@ Graphical model

Deep Learning & Graphical Models @ Bayesian deep learnin




Perception and Inference

Perception component Task-Specific component

Content understanding Target task

Bayesian deep learning (BDL)

Alaximum a posteriori (MAP)
Aviarkov chain Monte Carlo (MCMC)
Avariationalinference (V1)



Example: Medical Diagnosis
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Perception component

Task-Specific component

Symptoms Reasoning and inference

Bayesian deep learning (BDL)



Example: Movie Recommender Systems
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Perception component

Content understanding Similarity, preferences

Recommendation

Bayesian deep learning (BDL)



A Principled Probabilistic Framework
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Perception Component Task-Specific Component

Perception Variables @ @ @ @ @
Task Variables @ @ @

Hinge Variables @

[ Wang et al. 2016 ]



S
BDL Models for Different Applications

Applications Models Hinge Variables Learning
CDL [Wang et al.] v} MAP
Bayesian CDL [Wang et al.| 1V} Gibbs Samplin
Recommender Marginalized CDL [[7 ¢t al ] V) MAD
ystems Symmetric CDL L et al.] V. U7 MAP
Collaborative Deep Ranking |[Ying et al.| Vi MAP
Tobic Relational SDAE [Wang et al.] {S} MAP
M lej:lels DPFA-5BN [Gan et al.] 1 X} Hybrid MC
DPFA-RBM [Gan et al.| {X} Hybrid MC
Control Embed to Control [Watter et al.| {z¢,2141} Variational Inference

[ Wang et al. 2016 ]



Bayesian Deep Learning:
Undera PrincipledFramework
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“£a) Collaborative Deep Learning

[ Wang et al. 2015 (KDD)



Recommender Systems

Rating matrix: user
movie\_ 1

Assssssssssssgpsssssssssssss
]

| | Observed preferences: v
Matrix completion |
To predict: ?



Content information:
Plots, directors, actors, etc.



Modeling the Content Information
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_ Automatically
Handcrafted features Automatically learn features and

learn features adapt for ratings



Modeling the Content Information

1. Powerful features for content information
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Deep learning



Deep Learning
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Stackeddenoising Convolutionalneural Recurrent neural
autoencoders networks networks
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Typically forl.l.d. data



Modeling the Content Information

1. Powerful features for content information
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Deep learning

2. Feedback from rating informatiod Noni.i.d.
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Collaborative deep learning (CDL)



Contribution

Collaborative deep learning:
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* deep learning for nonl.I.d. data
* Joint representation learning and

collaborative filtering



Contribution

. Collaborative deep learning
. Complex target:
* pbeyond targets like classification and regressiol

* to complete a lowrank matrix



Contribution
. Collaborative deep learning

., Complex target

. First hierarchical Bayesian models for

deep hybrid recommendesystem



StackedDenoisingAutoencoders(SDAE)

Corrupted input Clean input

SDAE solves the following optimization problem:

min || X. — Xo|% £\ W, ||%.
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where A is a regularization parameter and || - || denotes the

Frobenius norm. _
[ Vincent et al. 2010 |



